Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Investigating Combustion in a Mini Internal Combustion Engine

2015-09-01
2015-01-9002
Owing to a high power-to-weight ratio, mini internal combustion engine is used in propelling an unmanned air vehicle. In comparison to the performance characteristics, the investigations on the combustion aspects of mini engines are scanty. This investigation concerns study of the combustion process of a mini engine and its variability. For this purpose, the experimental cylinder pressure histories were obtained on a laboratory set-up of a 7.45 cm3 capacity mini engine. The analyses of experimental data at different throttle settings reveal that there existed a varied range of rich and lean misfiring limits around a reference equivalence ratio that corresponds to the respective maximum indicated mean effective pressure. At the limiting equivalence ratios, cylinder pressure measurements showed a high degree of cycle-to-cycle variations. In some cases, a slow combustion or misfiring event preceded a rapid combustion.
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Effect of Fuel Injection Timing on the Mixture Preparation in a Small Gasoline Direct-Injection Engine

2018-10-30
2018-32-0014
Gasoline direct-injection (GDI) engines have evolved as a solution to meet the current demands of the automotive industry. Benefits of a GDI engine include good fuel economy, good transient response, and low cold start emissions. However, they suffer from problems, like combustion instability, misfire, and impingement of fuel on in-cylinder surfaces. Therefore, to highlight the influence of fuel injection timing on in-cylinder flow, turbulence, mixture distribution and wall impingement, a computational study is conducted on a small-bore GDI engine. Results showed that air motion inside the engine cylinder is influenced by direct-injection of fuel, with considerable variation in turbulent kinetic energy at the time of injection. Due to charge cooling effect, mixture density and trapped mass were increased by about 10.8% and 9.5%, respectively.
X