Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

Evaluation of Dynamic Roof Deformation in Rollover Crash Tests

2011-04-12
2011-01-1093
Although the measured amount of roof deformation associated with a given rollover crash test is often the residual or post test deformation, rollover crash test researchers are aware that roof deformation occurs dynamically throughout the rollover event with varying magnitude. The challenge to quantifying dynamic roof deformation has been the lack of a reliable method to measure and record the dynamic roof deformation during the rollover test. Researchers have explored various methods to measure dynamic roof deformation including the use of film analysis of external targets, accelerometers, string potentiometers, and 3D photogrammetry. This paper discusses a series of simulated curb trip rollover tests conducted to study and compare different methodologies to measure and record dynamic roof deformation.
Technical Paper

Ejection Mitigation in Rollover Events - Component Test Development

2007-04-16
2007-01-0374
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004(1)). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. During a series of rollover sensor development tests conducted by General Motors, data was collected and analyzed to identify the required load and energy absorption characteristics of the ejection mitigation device used. General Motors then derived from that data a component level test that can be used to evaluate the potential of a rollover capable side air bag to mitigate the likelihood of ejection in a majority of rollover tests.
X