Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Urea Deposit Predictions on a Practical Mid/Heavy Duty Vehicle After-Treatment System

2018-04-03
2018-01-0960
Urea/SCR systems have been proven effective at reducing NOx over a wide range of operating conditions on mid/heavy duty diesel vehicles. However, design changes due to reduction in the size of modern compact Urea/SCR systems and lower exhaust temperature have increased the possibility of urea deposit formation. Urea deposits are formed when urea in films and droplets undergoes undesirable secondary reactions and generate by-products such as ammelide, biuret and cyanuric Acid (CYA). Ammelide and CYA are difficult to decompose which lead to the formation of solid deposits on the surface. This phenomenon degrades the performance of the after treatment system by decreasing overall mixing efficiency, lowering de-NOx efficiency and increasing pressure drop. Therefore, mitigating urea deposits is a primary design goal of modern diesel after-treatment systems.
Technical Paper

Meeting Phase-2 GHG and Ultra-Low NOx Emissions with Conventional Engine Design for Light Heavy-Duty Applications

2023-04-11
2023-01-0269
Increasing concerns due to global warming have led to stringent regulation of greenhouse gas (GHG) emissions from diesel engines. Specifically, for GHG phase-2 regulation (2027), more than 4% improvement is needed when compared to phase-1 regulation (2017) in the light heavy-duty (LHD) diesel engine category. At the same time, California Air Resources Board (CARB) and Environmental Protection Agency (EPA) have proposed the new Low NOx standards that require up to 90% reduction in tailpipe (TP) NOx emissions in comparison to the current TP NOx standards that were implemented in 2010. In addition, CARB and EPA have proposed new certification requirements – Low Load Cycle (LLC) and revised heavy-duty in-use testing (HDIUT) based on the moving average window (MAW) method that would require rigorous thermal management. Hence, strategies for simultaneous reduction in GHG and TP NOx emissions are required to meet future regulations.
X