Refine Your Search

Search Results

Viewing 1 to 17 of 17
Journal Article

Hydrogen Embrittlement of Commercially Produced Advanced High Strength Sheet Steels

2010-04-12
2010-01-0447
The susceptibility of Advanced High Strength Steels (AHSS) to hydrogen embrittlement (HE) was evaluated on selected high strength sheet steels (DP 600, TRIP 780, TRIP 980, TWIP-Al, TWIP, and Martensitic M220) and the results were compared to data on a lower strength (300 MPa tensile strength) low carbon steel. Tensile samples were cathodically charged and then immediately tensile tested to failure to analyze the mechanical properties of the as-charged steel. The effects of hydrogen on deformation and fracture behavior were evaluated through analysis of tensile properties, necking geometry, and SEM images of fracture surfaces and metallographic samples of deformed tensile specimens. The two fully austenitic TWIP steels were resistant to hydrogen effects in the laboratory charged tensile samples.
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

Effects of Silicon and Boron Additions on the Susceptibility to Quench Embrittlement and the Bending Fatigue Performance of Vacuum Carburized Modified 4320 Steel

2007-04-16
2007-01-1005
The effect of B and Si additions on fracture and fatigue performance of vacuum carburized 4320 steel and modifications of 4320 steel containing additions of Si (1.0 and 2.0 wt pct) and B (0 and 17 ppm) was evaluated by bending fatigue testing. Three rates of gas quenching, in 10 bar nitrogen and 15 and 20 bar helium, were used to cool specimens after carburizing. The B, protected by Ti additions, together with the Si additions, increased core hardenability. The B/Si modified steels showed no improvement in fatigue resistance, as measured by endurance limits established by 10 million cycle runouts without fracture. However, scanning electron microscopy showed that Si reduced sensitivity to intergranular fracture or quench embrittlement, a major cause of bending fatigue crack initiation, and contributed to variable fatigue performance, with both low-cycle failures and runout performance at applied stresses significantly above measured endurance limits.
Technical Paper

Assessment of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels

2004-03-08
2004-01-0507
High strain rate test methods to obtain strain-rate dependent sheet steel tensile properties are considered. A tensile test method for sheet steels was developed to obtain accurate stress-strain data over the strain rate range from 0.001 s-1 to 500 s-1 using a servo-hydraulic test machine and tensile samples instrumented with strain gages. Results on several different automotive sheet steels, including interstitial free (IF), high strength low alloy (HSLA), dual phase (DP), and transformation induced plasticity (TRIP) steels, are presented. The results show that strain rate response differs between the various alloy systems. These results are compared with previously published data on strain-rate dependent steel properties. The importance of stress-strain curve shapes, which depend on alloy system, on energy absorption calculations using areas under stress-strain curves are also described.
Technical Paper

Effects of Pre-Strain on Properties of Low-Carbon Sheet Steels Tested over a Wide Range of Strain Rates

2001-03-05
2001-01-0082
Knowledge of high strain-rate deformation behavior of automotive body structural materials is of importance for design of new vehicles with improved crash-energy management characteristics. Since a large range of plastic strains is encountered during the forming process prior to assembly, the mechanical behavior of sheet steels under high strain rate deformation conditions must be understood after pre-straining, in addition to the as-produced condition. This paper presents the compression testing methodology employed to examine these properties, and focuses on the effects of quasi-static pre-strains (from 0 to 20%) on the subsequent behavior of a low carbon interstitial free steel tested over a broad range of strain rates (from 10−2 to 103s−1). The results suggest that the increase in yield stress associated with increasing strain rate is not substantially influenced by prior cold work.
Technical Paper

Deep Rolling Response of Notched Medium Carbon Bar Steels

2004-03-08
2004-01-1528
The effects of deep rolling were evaluated by reviewing the fatigue performance of three medium-carbon (0.4 C) bar steels representing microstructural classes characteristic of forging steels used for crankshaft and other automotive applications. Deep rolling is a surface deformation process whereby a radially symmetric work piece undergoes a surface deformation operation. The steel grades included a quenched and tempered alloy steel (4140) that demonstrated a high yield stress and low strain hardening rate, a non-traditional bainitic experimental grade (1.2 Mn, 0.72 Si) containing high amounts of retained austenite with low yield stress and high strain hardening rate, and a ferritic/pearlitic grade (1.3 Mn, 0.56 Si) with a low yield stress and medium strain rate hardening rate. A reproducible test methodology to assess fatigue behavior was developed, based on flex-beam, fully reversed, S-N type laboratory fatigue testing.
Technical Paper

The Effects of Room Temperature Aging on Subsequent Bake-Hardening of Automotive Sheet Steels

2002-03-04
2002-01-0041
Bake-hardening steels used for exposed auto-body panels provide low yield strengths before forming, and increased strength and dent resistance after the forming and paint-baking processes. Room temperature aging can alter the sheet properties before forming, after forming, or after baking. Knowledge of the evolution of mechanical properties is important, and the effects of room temperature and simulated room temperature aging (at 50°C and 100°C) on the yielding behavior and the bake hardening response of two different bake-hardening steel grades were studied. The steels included a low strength ultra-low carbon steel and a dual-phase steel with higher strength and greater bake-hardening index. Neither steel exhibited a substantial response to aging prior to tensile pre-straining, although both steels exhibited strength increases after either aging or baking following straining.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
Technical Paper

Strain Rate Effects on Mechanical Stability of Retained Austenite in TRIP Sheet Steels

2006-04-03
2006-01-1434
Dynamic mechanical properties of TRIP steels with the same volume fraction but different stabilities of retained austenite were evaluated over a wide range of strain rates using a high-velocity hydraulic tensile testing machine. Tensile tests were performed at strain rates ranging from 10-2 to 6×102s-1 and ultimate tensile strength, strain hardening behavior, and absorbed energy were evaluated. Strain control during high speed tensile testing was accomplished using a “stopper” attachment designed to limit strain within the gage section to an amount preset before testing. Strain was controlled successfully up to the highest strain rate examined, 200 s-1. The methodology allowed, for the first time, the extent of austenite transformation to be monitored at incremental strains during a high-rate test. At all strain rates, the extent of martensite transformation was considerable after only a few strain percent, and was essentially complete well before the onset of necking.
Technical Paper

Response to Hydrogen Charging in High Strength Automotive Sheet Steel Products

2003-03-03
2003-01-0525
The influences of laboratory-induced hydrogen on the tensile deformation and fracture behavior of selected sheet steels including conventional DQSK and HSLA steels as well as newer DP and TRIP grades were evaluated. The effects of cold work, simulated paint baking, and natural aging were considered. Hydrogen effects were observable by increased flow stress, decreased ductility, altered neck geometry, and altered fracture mechanisms. Differences among the steels and conditions were observed and interpreted on the basis of microstructure, fracture behavior, and theories of hydrogen embrittlement.
Technical Paper

The Effect of Strain Rate on the Sheet Tensile Properties and Formability of Ferritic Stainless Steels

2003-03-03
2003-01-0526
High strain rate sheet tensile tests (up to 300s-1) and Ohio State University (OSU) formability tests (up to an estimated strain rate of 10s-1) were performed to examine the effect of strain rate on the mechanical properties and formability of five ferritic stainless steels: HIGH PERFORMANCE-10™ 409 (HP-10 409), ULTRA FORM® 409 (UF 409), HIGH PERFORMANCE-10™ 439 (HP-10 439), two thicknesses of 18 Cr-Cb™ stainless steel, all supplied by AK Steel, and Duracorr®, a ferrite-tempered martensite dual-phase stainless steel supplied by Bethlehem Steel Corporation. Tensile results show that increasing strain rate resulted in increases in yield stress, flow stress, and stress at instability for all alloys tested. In addition, increases in uniform and total elongation were also found for each of the five alloys.
Technical Paper

Examination of Pitting Fatigue in Carburized Steels with Controlled Retained Austenite Fractions

2006-04-03
2006-01-0896
The effects of several variables on pitting fatigue life of carburized steels were analyzed using a geared roller test machine (GRTM). The material variables that were primarily used to influence retained austenite include aim surface carbon concentration (0.8 % and 0.95 %), alloy (SAE 4320 and a modified SAE 4122), and cold treatment (performed on one material condition per alloy). Testing variables included contact stress in addition to a variation in lambda ratio (oil film thickness/surface roughness), arising from variation in roughness among the machined surfaces. Test results are presented, and differences in performance are considered in terms of material and testing variables. A primary observation from these results is an improvement in contact fatigue resistance apparently arising from cold-treatment and the associated reduction of retained austenite at the surface.
Technical Paper

Effects of Testing Temperature on the Fatigue Behavior of Carburized Steel

2005-04-11
2005-01-0986
The effects of elevated testing temperature on the fatigue behavior of carburized steel were evaluated by testing modified Brügger bending fatigue specimens at room temperature, 90 °C and 150 °C. SAE 4023, SAE 4320, and SAE 9310 steel were studied to assess the influence of alloy content and stability of retained austenite. Fatigue samples were gas-carburized and tested in air at 30 Hz with a stress ratio of 0.1. An infrared spot lamp was used to heat samples to 90 °C (150 °F) or 150 °C (302 °F) during testing. S-N curves were developed for the room temperature baseline tests as well as elevated temperature tests. The endurance limits determined are as follows: SAE 4023-RT (1170 MPa), SAE 4023-90°C (1140 MPa), SAE 4320-RT (1210 MPa), SAE 4320-90°C (1280 MPa), SAE 9310-RT (1380 MPa), SAE 9310-90°C (1240 MPa).
Technical Paper

Bending Fatigue Properties of Prestrained Interstitial Free Zinc-Coated Sheet Steels

2000-03-06
2000-01-0309
The effects of prestrain and zinc coating type on the bending fatigue behavior of titanium-stabilized interstitial free steel were evaluated. From a single zinc bath chemistry, coated sheet steel samples were prepared with either a hot dip galvanized or galvannealed coating. Uniaxial tensile prestrains of 2 and 4 pct. were introduced parallel to the rolling direction on 12.7 cm wide strips. Krouse-type fatigue samples were machined both parallel and transverse to the rolling/prestrain direction. Reversed bending S-N fatigue data showed that the fatigue resistance depended on a complex interaction between the strength increase due to work hardening and fatigue crack development as altered by the presence of the coatings. For both coating types the fatigue resistance increased with prestrain. During prestrain, coating cracks oriented perpendicular to the tensile prestrain direction developed and the crack density was greater in the galvannealed materials.
Technical Paper

Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

2014-04-01
2014-01-0812
In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and to perform a computational material design approach for performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the model steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases in the model are determined based on the initial constituent properties from HEXRD test and the subsequent calibration of model predictions to tensile test results. The influence of various material parameters of the constituents on the macroscopic behavior is then investigated.
X