Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effects of Pre-Strain on Properties of Low-Carbon Sheet Steels Tested over a Wide Range of Strain Rates

2001-03-05
2001-01-0082
Knowledge of high strain-rate deformation behavior of automotive body structural materials is of importance for design of new vehicles with improved crash-energy management characteristics. Since a large range of plastic strains is encountered during the forming process prior to assembly, the mechanical behavior of sheet steels under high strain rate deformation conditions must be understood after pre-straining, in addition to the as-produced condition. This paper presents the compression testing methodology employed to examine these properties, and focuses on the effects of quasi-static pre-strains (from 0 to 20%) on the subsequent behavior of a low carbon interstitial free steel tested over a broad range of strain rates (from 10−2 to 103s−1). The results suggest that the increase in yield stress associated with increasing strain rate is not substantially influenced by prior cold work.
Technical Paper

Deep Rolling Response of Notched Medium Carbon Bar Steels

2004-03-08
2004-01-1528
The effects of deep rolling were evaluated by reviewing the fatigue performance of three medium-carbon (0.4 C) bar steels representing microstructural classes characteristic of forging steels used for crankshaft and other automotive applications. Deep rolling is a surface deformation process whereby a radially symmetric work piece undergoes a surface deformation operation. The steel grades included a quenched and tempered alloy steel (4140) that demonstrated a high yield stress and low strain hardening rate, a non-traditional bainitic experimental grade (1.2 Mn, 0.72 Si) containing high amounts of retained austenite with low yield stress and high strain hardening rate, and a ferritic/pearlitic grade (1.3 Mn, 0.56 Si) with a low yield stress and medium strain rate hardening rate. A reproducible test methodology to assess fatigue behavior was developed, based on flex-beam, fully reversed, S-N type laboratory fatigue testing.
Technical Paper

The Effects of Room Temperature Aging on Subsequent Bake-Hardening of Automotive Sheet Steels

2002-03-04
2002-01-0041
Bake-hardening steels used for exposed auto-body panels provide low yield strengths before forming, and increased strength and dent resistance after the forming and paint-baking processes. Room temperature aging can alter the sheet properties before forming, after forming, or after baking. Knowledge of the evolution of mechanical properties is important, and the effects of room temperature and simulated room temperature aging (at 50°C and 100°C) on the yielding behavior and the bake hardening response of two different bake-hardening steel grades were studied. The steels included a low strength ultra-low carbon steel and a dual-phase steel with higher strength and greater bake-hardening index. Neither steel exhibited a substantial response to aging prior to tensile pre-straining, although both steels exhibited strength increases after either aging or baking following straining.
Technical Paper

Strain Rate Effects on Mechanical Stability of Retained Austenite in TRIP Sheet Steels

2006-04-03
2006-01-1434
Dynamic mechanical properties of TRIP steels with the same volume fraction but different stabilities of retained austenite were evaluated over a wide range of strain rates using a high-velocity hydraulic tensile testing machine. Tensile tests were performed at strain rates ranging from 10-2 to 6×102s-1 and ultimate tensile strength, strain hardening behavior, and absorbed energy were evaluated. Strain control during high speed tensile testing was accomplished using a “stopper” attachment designed to limit strain within the gage section to an amount preset before testing. Strain was controlled successfully up to the highest strain rate examined, 200 s-1. The methodology allowed, for the first time, the extent of austenite transformation to be monitored at incremental strains during a high-rate test. At all strain rates, the extent of martensite transformation was considerable after only a few strain percent, and was essentially complete well before the onset of necking.
X