Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison and Verification of Experimental and Numerical Models for the Prediction of the Efficiency of Engine Noise Shields

1995-05-01
951339
The reported investigations aimed at adopting and verifying numerical prediction methods for the determination of the efficiency of engine sound shields. An extended measurement series and parallel Boundary Element calculations were conducted on a simple engine simulator with various engine shields. The effect of the shields was expressed in terms of spatially averaged, narrow band Insertion Loss spectra. It was found that the efficiency of sound shields is determined by complex interactions between the source and its surroundings. These effects could be better understood and reasonably well predicted by using the BE method. The relative IL quantity can be calculated more accurately than the absolute sound field descriptors themselves.
Technical Paper

Development of an active exhaust silencer for internal combustion engines using feedback control

1999-05-17
1999-01-1844
A silencer to attenuate engine exhaust noise using active control methods has been developed. The device consists of an electrically driven valve, combined with a buffer volume, which is connected to the exhaust outlet. Using the mean flow through the valve and the pressure fluctuations in the volume, the valve regulates the flow in such a way that only the mean flow passes through the exhaust outlet. The fluctuations of the flow are temporally buffered in the volume. To carry out optimization and validation experiments, a cold engine simulator has been developed. This device generates realistic exhaust noise as well as the matching gas flow using compressed air. The simulator allows quick and reliable acoustic and fluid dynamic experiments on exhaust prototypes. The silencer is developed using electrical equivalent circuits, wherein at first instance a feedforward control is applied.
X