Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Crush Energy and Planar Impact Mechanics for Accident Reconstruction

1998-02-23
980025
The algorithm used in the third version of the Calspan Reconstruction of Accident Speeds on the Highway (CRASH3) and planar impact mechanics are both used to calculate energy loss and velocity changes of vehicle collisions. They (intentionally) solve the vehicle collision problem using completely different approaches, however, they should produce comparable results. One of the differences is that CRASH3 uses a correction factor for estimating the collision energy loss due to tangential effects whereas planar impact mechanics uses a common velocity condition in the tangential direction. In this paper, a comparison is made between how CRASH3 computes the energy loss of a collision and how this same energy loss is determined by planar impact mechanics.
Technical Paper

Tire Models for Vehicle Dynamic Simulation and Accident Reconstruction

2009-04-20
2009-01-0102
Various vehicle dynamic simulation software programs have been developed for use in reconstructing accidents. Typically these are used to analyze and reconstruct preimpact and postimpact vehicle motion. These simulation programs range from proprietary programs to commercially available packages. While the basic theory behind these simulations is Newton's laws of motion, some component modeling techniques differ from one program to another. This is particularly true of the modeling of tire force mechanics. Since tire forces control the vehicle motion predicted by a simulation, the tire mechanics model is a critical feature in simulation use, performance and accuracy. This is particularly true for accident reconstruction applications where vehicle motions can occur over wide ranging kinematic wheel conditions. Therefore a thorough understanding of the nature of tire forces is a necessary aspect of the proper formulation and use of a vehicle dynamics program.
Technical Paper

The Tire-Force Ellipse (Friction Ellipse) and Tire Characteristics

2011-04-12
2011-01-0094
The tire-force ellipse and tire-force circle (more frequently referred to as the friction ellipse and the friction circle, respectively) have been used for many years to qualitatively illustrate the concept of tire-road force interaction, particularly the force-limiting behavior for combined braking and steering (combined tire forces). Equations of the tire-force circle/ellipse, or, more specifically, the force limit envelope, in its idealized form have also been used in the development of quantitative models of combined tire forces used in vehicle dynamic simulation software. Comparisons of this idealized tire-force circle/ellipse using a simple bilinear tire force model and using actual tire data show that it provides only a limited, simplified notion of combined tire forces due to its lack of dependence upon the slip angle and traction slip.
Technical Paper

Sensitivity Analysis of Simulated Postimpact Vehicle Motion Using Design of Experiments (DOE)

2018-04-03
2018-01-0526
An important component of the process of the reconstruction of a vehicle crash involves the modeling of the motion of the vehicle(s) before and after a collision. Depending on the conditions, this motion might be modeled using a vehicle dynamics simulation program. In the simulated dynamics of vehicle motion, the tire forces are the predominant means by which the path of the vehicle is determined, with aerodynamic loads being the other force acting on the vehicle. Recent literature on this topic investigated the effect of the steer angle of the front wheels on the postimpact trajectory of a light vehicle for a large initial angular velocity. This paper looks more broadly at the modeling of light vehicle postimpact motion using vehicle dynamics simulation but for a wider range of factors. Design of experiments (DOE) is used to rank the effect of various physical factors of vehicle postimpact motion.
Technical Paper

A Review of Impact Models for Vehicle Collision

1987-02-01
870048
Automobile accident reconstruction and vehicle collision analysis techniques generally separate vehicle collisions into three different phases: pre-impact, impact and post-impact. This paper will concern itself exclusively with the modeling of the impact phase, typically defined as the time the vehicles are in contact. Historically, two different modeling techniques have been applied to the impact of vehicles. Both of these techniques employ the impulse-momentum formulation of Newton's Second Law. The first relies exclusively on this principle coupled with friction and restitution to completely model the impact. The second method combines impulse-momentum with a relationship between crush geometry and energy loss to model the impact. Both methods ultimately produce the change in velocity. ΔV, and other pertinent information about a collision.
Technical Paper

Sensitivity Analysis of Various Vehicle Dynamic Simulation Software Packages Using Design of Experiments (DOE)

2020-04-14
2020-01-0639
A previous paper on this topic presented the use of design of experiments (DOE) to evaluate the sensitivity of vehicle dynamics simulation of the postimpact motion of a vehicle that included high initial rotational rates. That investigation involved only one software package and thus was confined to one simulation model for the purposes of developing and refining the analysis method rather than including a variety of simulation models for broader application. This paper expands the application of the method to investigate the comparative behavior and sensitivity of several other vehicle dynamic simulation models commonly used in the field of crash reconstruction. The software packages included in the studies presented in this paper are HVE (SIMON and EDSMAC4), PC-Crash and VCRware. This paper will present the results of the study, conducted using DOE, involving these models.
Book

Vehicle Accident Analysis and Reconstruction Methods, Second Edition

2011-04-12
Designed for the experienced practitioner, this new book aims to help reconstruction specialists with problems they may encounter in everyday analysis. The authors demonstrate how to take the physics behind accidents out of the idealized world and into practical situations. Real-world examples are used to illustrate the methods, clarify important concepts, and provide practical applications to those working in the field. Thoroughly revised, this new edition builds on the original exploration of accident analysis, reconstruction, and vehicle design. Enhanced with new material and improved chapters on key topics, an expanded glossary of automotive terms, and a bibliography at the end of the book providing further reading suggestions make this an essential resource reference for engineers involved in litigation, forensic investigation, automotive safety, and crash reconstruction.
Book

Vehicle Accident Analysis and Reconstruction Methods, Third Edition

2022-01-07
In this third edition of Vehicle Accident Analysis & Reconstruction Methods, Raymond M. Brach and R. Matthew Brach have expanded and updated their essential work for professionals in the field of accident reconstruction. Most accidents can be reconstructed effectively using calculations and investigative and experimental data: the authors present the latest scientific, engineering, and mathematical reconstruction methods, providing a firm scientific foundation for practitioners. Accidents that cannot be reconstructed using the methods in this book are rare. In recent decades, the field of crash reconstruction has been transformed through the use of technology. The advent of event data records (EDRs) on vehicles signaled the era of modern crash reconstruction, which utilizes the same physical evidence that was previously available as well as electronic data that are measured/captured before, during, and after the collision.
Book

SAE International's Dictionary of Vehicle Accident Reconstruction and Automotive Safety

2023-10-25
This invaluable dictionary springs from the foundation laid by the glossary in Vehicle Accident Analysis and Reconstruction Methods, Third Edition created by the disbanded SAE Accident Investigation and Reconstruction Practices Committee (AIRP). Building on this content, this book encompasses a wide array of terms derived from both accident reconstruction and automotive safety. While biomechanics contributes numerous terms related to automotive safety concerning occupants, accident reconstruction primarily caters to vehicular elements. Unlike typical glossaries, this compendium doesn't just define; it references the sources related to the concept. Diving into SAE standards, recommended practices, and other renowned texts, this dictionary paints a complete picture. Even as the automotive landscape evolves, this work stands as an extensive reference for students and professionals alike.
X