Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling Combined Braking and Steering Tire Forces

2000-03-06
2000-01-0357
The force distributed over the contact patch between a tire and a road surface is typically modeled in component form for dynamic simulations. The two components in the plane of the contact patch are the braking, or traction force, and the steering, or side or cornering force. A third force distributed over the contacts patch is the normal force, perpendicular to the road surface. The two tangential components in the plane of the road are usually modeled separately since they depend primarily on independent parameters, wheel slip and sideslip. Mathematical expressions found in the literature for each component include exponential functions, piecewise linear functions and the Bakker-Nyborg-Pacejka equations, among others. Because braking and steering frequently occur simultaneously and their resultant tangential force is limited by friction, the two components must be properly combined for a full range of the wheel slip and sideslip parameters.
Journal Article

Analysis of High-Speed Sideswipe Collisions Using Data from Small Overlap Tests

2014-04-01
2014-01-0469
Little experimental data have been reported in the crash reconstruction literature regarding high-speed sideswipe collisions. The Insurance Institute for Highway Safety (IIHS) conducted a series of high-speed, small overlap, vehicle-to-barrier and vehicle-to-vehicle crash tests for which the majority resulted in sideswipe collisions. A sideswipe collision is defined in this paper as a crash with non-zero, final relative tangential velocity over the vehicle-to-barrier or vehicle-to-vehicle contact surface; that is, sliding continues throughout the contact duration. Using analysis of video from 50 IIHS small overlap crash tests, each test was modeled using planar impact mechanics to determine which were classified as sideswipes and which were not. The test data were further evaluated to understand the nature of high-speed, small overlap, sideswipe collisions and establish appropriate parameter ranges that can aid in the process of accident reconstruction.
X