Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Integrated Electrical System Model of a More Electric Aircraft Architecture

2008-11-11
2008-01-2899
A primary challenge in performing integrated system simulations is balancing system simulation speeds against the model fidelity of the individual components composing the system model. Traditionally, such integrated system models of the electrical systems on more electric aircraft (MEA) have required drastic simplifications, linearizations, and/or averaging of individual component models. Such reductions in fidelity can take significant effort from component engineers and often cause the integrated system simulation to neglect critical dynamic behaviors, making it difficult for system integrators to identify problems early in the design process. This paper utilizes recent advancements in co-simulation technology (DHS Links) to demonstrate how integrated system models can be created wherein individual component models do not require significant simplification to achieve reasonable integrated model simulation speeds.
Technical Paper

Dynamic Thermal Management System Modeling of a More Electric Aircraft

2008-11-11
2008-01-2886
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the thermal management systems (TMS). A thermal management system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. It is anticipated that the tracking of thermal energy through numerical integration will lead to more accurate predictions of worst case TMS sizing conditions. In addition, the non-proprietary nature of the tool affords users the ability to modify component models and integrate advanced conceptual designs that can be evaluated over multiple missions to determine the impact at a system level.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
X