Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of FENSAP-ICE-Unsteady to Helicopter Icing

2007-09-24
2007-01-3310
The applicability of FENSAP-ICE-Unsteady to solve ice accretion on rotating helicopter blades is investigated using a two-bladed rotor and a generic cylinder, to represent a fuselage, for a forward flight test case. The unsteady rime ice accretion is simulated by coupling, at each time step, flow and water drop equations to the Messinger icing model. Mesh displacement effects are taken into account by an Arbitrary Lagrangian-Eulerian method. This new icing model is applied to rotor/fuselage flows by considering two grid domains: the first being fixed around the fuselage, and the second rotating with the blades. The gap region is stitched with tetrahedral elements to fully guarantee flow conservation.
Technical Paper

FENSAP-ICE: A Second Generation 3D CFD-based In-Flight Icing Simulation System

2003-06-16
2003-01-2157
FENSAP-ICE is a second generation CFD-based in-flight icing simulation system, bringing to the icing field simulation advances widely used by the aircraft and turbo machinery industries. It is built in a modular and interlinked fashion to successively solve each of flow, impingement, accretion, heat loads and performance degradation via field models based on the Euler/Navier-Stokes equations for the clean and degraded flow, and new partial differential equations for the other three icing processes. This paper presents the FENSAP-ICE system and shows examples of its use to calculate impingement and ice shapes on a 3D helicopter rotor blade tip and on a nacelle inlet.
X