Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Rollover Crash Test Results: Steer-Induced Rollovers

2011-04-12
2011-01-1114
A series of rollover tests was conducted in a real-world environment in which a vehicle was driven or towed to highway speed then steered to induce a rollover. This research presents analysis of the rollover phase of five tests. In each test, the steering maneuver was initiated on-pavement, and the rollover was caused by tire-to-ground interaction. Tests included vehicles that tripped both on-pavement and on soil. Four tests ended with the vehicle at rest off-road, and one ended with the vehicle remaining on the pavement. A programmable remote control radio was used to steer the vehicles through a double-step steer maneuver to result in a rollover. The test vehicles were instrumented and data was collected during each test, including steering, suspension motion, rotational rates, and accelerations. A Global Positioning System (GPS) speed sensor (VBOX III manufactured by Racelogic) was used to monitor the vehicle speed. Data from all tests is presented in the Appendix .
Technical Paper

Comparison of Linear Variable Deceleration Rate Rollover Reconstruction to Steer-Induced Rollover Tests

2012-04-16
2012-01-0469
A variable deceleration rate approach to rollover crash reconstruction was proposed in 2009 by Rose and Beauchamp. A detailed description of Rose and Beauchamp's method was outlined in 2010. The method used a Linearly Variable Deceleration Rate (LVDR) as a function of roll distance. Improvements in responses as a function of time was demonstrated by Rose and Beauchamp using test data from two 208 dolly rollover tests; however, they noted that additional validation work using steering-induced rollover tests would be desirable. This paper provides additional validation of the LVDR model using the steer-induced rollover test data reported in 2011 by Stevens et al. The Over-The-Ground Speed (OGS) and recorded roll rate results from the five steer-induced rollover tests reported by Stevens' in 2011 were compared to reconstructed speed and roll rates as a function of time using the 2010 Rose and Beauchamp LVDR method.
Technical Paper

The Motor Vehicle in the Post-Crash Environment, An Understanding of Ignition Properties of Spilled Fuels

1999-03-01
1999-01-0086
To date, the flammability of common automotive fluids under real-world conditions has not been well characterized for general use in the automotive community. This paper presents the results of a research program aimed at providing a greater understanding of the potential fire hazards of common fluids carried on board today's vehicles. A literature review was conducted to define the ignition properties of common automotive fluids as determined very precisely in the lab environment. A test program was then established to gain insight into the ignition properties of common automotive fluids under some real-world conditions. Automotive engine and exhaust components were used to create a test mechanism which realistically represented the environment, temperatures, and surfaces to which vehicle fluids may be subjected The reported laboratory results are compared to the test data. Tests were conducted on twelve fluids with and without ignition sources present.
X