Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Rollover Crash Test Results: Steer-Induced Rollovers

2011-04-12
2011-01-1114
A series of rollover tests was conducted in a real-world environment in which a vehicle was driven or towed to highway speed then steered to induce a rollover. This research presents analysis of the rollover phase of five tests. In each test, the steering maneuver was initiated on-pavement, and the rollover was caused by tire-to-ground interaction. Tests included vehicles that tripped both on-pavement and on soil. Four tests ended with the vehicle at rest off-road, and one ended with the vehicle remaining on the pavement. A programmable remote control radio was used to steer the vehicles through a double-step steer maneuver to result in a rollover. The test vehicles were instrumented and data was collected during each test, including steering, suspension motion, rotational rates, and accelerations. A Global Positioning System (GPS) speed sensor (VBOX III manufactured by Racelogic) was used to monitor the vehicle speed. Data from all tests is presented in the Appendix .
Technical Paper

Comparison of Linear Variable Deceleration Rate Rollover Reconstruction to Steer-Induced Rollover Tests

2012-04-16
2012-01-0469
A variable deceleration rate approach to rollover crash reconstruction was proposed in 2009 by Rose and Beauchamp. A detailed description of Rose and Beauchamp's method was outlined in 2010. The method used a Linearly Variable Deceleration Rate (LVDR) as a function of roll distance. Improvements in responses as a function of time was demonstrated by Rose and Beauchamp using test data from two 208 dolly rollover tests; however, they noted that additional validation work using steering-induced rollover tests would be desirable. This paper provides additional validation of the LVDR model using the steer-induced rollover test data reported in 2011 by Stevens et al. The Over-The-Ground Speed (OGS) and recorded roll rate results from the five steer-induced rollover tests reported by Stevens' in 2011 were compared to reconstructed speed and roll rates as a function of time using the 2010 Rose and Beauchamp LVDR method.
X