Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The HUMOSIM Ergonomics Framework: A New Approach to Digital Human Simulation for Ergonomic Analysis

2006-07-04
2006-01-2365
The potential of digital human modeling to improve the design of products and workspaces has been limited by the time-consuming manual manipulation of figures that is required to perform simulations. Moreover, the inaccuracies in posture and motion that result from manual procedures compromise the fidelity of the resulting analyses. This paper presents a new approach to the control of human figure models and the analysis of simulated tasks. The new methods are embodied in an algorithmic framework developed in the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. The framework consists of an interconnected, hierarchical set of posture and motion modules that control aspects of human behavior, such as gaze or upper-extremity motion. Analysis modules, addressing issues such as shoulder stress and balance, are integrated into the framework.
Technical Paper

A New Approach to Modeling Driver Reach

2003-03-03
2003-01-0587
The reach capability of drivers is currently represented in vehicle design practice in two ways. The SAE Recommended Practice J287 presents maximum reach capability surfaces for selected percentiles of a generic driving population. Driver reach is also simulated using digital human figure models. In typical applications, a family of figure models that span a large range of the target driver population with respect to body dimensions is positioned within a digital mockup of the driver's workstation. The articulated segments of the figure model are exercised to simulate reaching motions and driver capabilities are calculated from the constraints of the kinematic model. Both of these current methods for representing driver reach are substantially limited. The J287 surfaces are not configurable for population characteristics, do not provide the user with the ability to adjust accommodation percentiles, and do not provide any guidance on the difficulty of reaches that are attainable.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Modeling In-Vehicle Reaches Perturbed by Ride Motion

2004-06-15
2004-01-2180
Vehicle operators are required to perform a variety of reaching tasks while the vehicle is in motion. The vibration transmitted from the terrain-vehicle coupling can prevent the operator from successfully completing the required task. The level to which vibration inhibits the completion of these tasks must be more clearly understood in order to effectively design controls and displays that minimize these performance decrements. The Ride Motion Simulator (RMS) at the U.S. Army Tank-Automotive Research, Development, and Engineering Center (TARDEC) simulated single-axis and 6DOF ride motion, in which twelve participants were asked to perform push-button reaching tasks to eight RMS-mounted targets. In order to better ascertain the effects of dynamic ride motion on in-vehicle reaching tasks, we used a twelve-camera VICON optical motion capture system to record and UGS PLM Solutions’ Jack™ to analyze the associated kinematic and kinetic motions.
Book

Digital Human Modeling for Vehicle and Workplace Design

2001-04-05
This book presents seven case studies in which digital human models were used to solve different types of physical problems associated with proposed human-machine interaction tasks. This book includes contributions from researchers at Ford, Boeing, DaimlerChrysler, General Motors, the U.S. Air Force, and others.
X