Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Active Human Response Model to Ride Motion

2006-07-04
2006-01-2363
Vehicle ride motion produces a dynamic response of the seated operator, which disturbs the intended fingertip trajectory during reach activities. This perturbation induces deviations that must be corrected to successfully complete the reach. Visual and/or proprioceptive information are necessary to detect these deviations and provide feedback to the controller of the neuromuscular system. In an attempt to predict movement alterations and adjustments under whole body vibration exposure, a trajectory planning and feedback controller was developed using split sample data from a series of reaching experiments on a six degree of freedom motion platform.
Technical Paper

Modeling In-Vehicle Reaches Perturbed by Ride Motion

2004-06-15
2004-01-2180
Vehicle operators are required to perform a variety of reaching tasks while the vehicle is in motion. The vibration transmitted from the terrain-vehicle coupling can prevent the operator from successfully completing the required task. The level to which vibration inhibits the completion of these tasks must be more clearly understood in order to effectively design controls and displays that minimize these performance decrements. The Ride Motion Simulator (RMS) at the U.S. Army Tank-Automotive Research, Development, and Engineering Center (TARDEC) simulated single-axis and 6DOF ride motion, in which twelve participants were asked to perform push-button reaching tasks to eight RMS-mounted targets. In order to better ascertain the effects of dynamic ride motion on in-vehicle reaching tasks, we used a twelve-camera VICON optical motion capture system to record and UGS PLM Solutions’ Jack™ to analyze the associated kinematic and kinetic motions.
X