Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

TBL Modeling for Aircraft Interior Noise Prediction Using Statistical Energy Analysis

2013-05-13
2013-01-1931
The turbulent boundary layer (TBL) that forms on the outside of a commercial airplane in flight is a significant source of noise. During cruise, the TBL can be the dominant source of noise. Because it is a significant contributor to the interior noise, it is desirable to predict the noise due to the TBL. One modeling approach for the acoustic prediction is statistical energy analysis (SEA). This technique has been adopted by North American commercial airplane manufacturers. The flow over the airplane is so complex that a fully resolved pressure field required for noise predictions is not currently analytically or numerically tractable. The current practice is to idealize the flows as regional and use empirical models for the pressure distribution. Even at this level of idealization, modelers do not agree on appropriate models for the pressure distributions. A description of the wall pressure is insufficient to predict the structural response. A structural model is also required.
Technical Paper

Design of a Quiet Inlet for a 6×6 Boundary Layer Flow Duct

2011-05-17
2011-01-1617
The turbulent boundary layer (TBL) that forms on the outer skin of the aircraft in flight is a significant source of interior noise. However, the existing quiet test facilities capable of measuring the TBL wall pressure fluctuations tend to be at low Mach numbers. The objective of this study was to develop a new inlet for an existing six inch square (or 6×6) flow duct that would be adequately free from facility noise to study the TBL wall pressure fluctuations at higher, subsonic Mach numbers. First, the existing flow duct setup was used to measure the TBL wall pressure fluctuations. Then the modified inlet was successfully used to make similar measurements up to Mach number of 0.6. These measurements will be used in the future to validate wall pressure spectrum models for interior noise analysis programs such as statistical energy analysis (SEA) and dynamic energy analysis (DEA).
Technical Paper

Spirit AeroSystems Acoustics Lab: Measurement and Analysis Capabilities

2011-05-17
2011-01-1643
Previously part of a larger OEM, Spirit AeroSystems became a standalone company 5 years ago and is currently a Tier One supplier of aerostructures. Products include fuselage components, wing structures, engine struts and nacelles, and at the request of various OEMs, fully stuffed fuselages and podded engines where all of the wiring, heating, duct work, etc. is installed prior to delivery. While operating as part of the Propulsion Structures and Systems Business Unit, the design, testing and analysis services provided by the acoustics lab potentially impact all programs at all stages of development because of increasing noise regulations and material certification requirements for implementation in high noise environments.
Technical Paper

Operational Determination of Car Window Damping

2015-06-15
2015-01-2301
Wind noise can be a significant event for automotive design engineers. The greenhouse glass plays an important role in the wind noise process. Robust estimates of the greenhouse glass damping are necessary for both understanding and modeling the role of the glass in the wind noise process. One unanswered question is whether the aerodynamic loads affect the window glass damping. To make this determination a method to assess the operational damping is required. The civil engineering community uses the random decrement technique to assess operational damping due to wind loads. The random decrement technique has been shown to be a normalized autocorrelation function. In this paper the damping is estimated directly from the autocorrelation function. In the first section the relationship between the damping and autocorrelation function is examined for white noise excitation. A single oscillator is examined as the first case. Extension to higher modal densities is discussed.
X