Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Determining Isolator Damping for Minimized Response from Impulse: A Theoretical Approach

2011-09-13
2011-01-2239
Several recent product developments for vibration and motion control have needed passive viscous damping, in addition to traditional elastomer-based hysteretic damping, to be successful in their respective applications. In addition to attenuating steady-state vibration, an important function of these recent product developments is to control motion from impulsive or mechanical shock input. Examples are the cab mounts of off-highway vehicles that need damping in the vertical direction to control cab motion from ground input through the vehicle and some torsionally flexible couplings that need damping to control torque spikes from shift shocks or other transient events. In this work, the theoretical damped impulse response quantities of displacement, velocity, acceleration, force, jerk, yank, and jounce are investigated. This work shows that, for certain response quantities, there is a specific magnitude of damping that minimizes response from impulsive or mechanical shock input.
Technical Paper

Effect of Surface Processes on High-Cycle Fatigue Life of Titanium Alloys

2006-09-12
2006-01-3129
Abrasive blasting and chemical etching processes are often performed on titanium substrates to improve the adhesion performance of paints, coatings, and adhesives. Abrasive blasting and chemical etching processes alter the physical metallurgy of surfaces so they can produce varied and uncertain effects on the fatigue life of the substrate. The fatigue life of titanium subjected to various blasting intensities and etching has been determined and statistically analyzed. The results of this work indicate that, for titanium alloys, increased aluminum oxide abrasive blasting intensities decrease fatigue life and that chemical etching also decreases fatigue life.
Technical Paper

Comprehensive Prediction of Compactor Drum Suspension Performance

2015-09-29
2015-01-2765
This paper presents simple but comprehensive modeling of the loads on the rubber sandwich-type mounts that often suspend the drum(s) in vibratory compactors or asphalt rollers. The goal of the modeling is to predict the overall performance of the rubber mount system. The modeling includes calculations to 1) identify and quantify all predictable low-frequency loads on the rubber mounts during normal vehicle operations, 2) predict the steady-state high-frequency vibration response of the drum, rubber mounts, and vehicle frame during compaction operations, 3) predict the heat generation in the rubber mounts from their hysteretic damping, and 4) predict the fatigue life and life distribution of the rubber mounts. Some typical results of the modeling are provided along with some brief criteria to assess suspension performance. Other, unpredictable suspension loads are discussed but not modeled.
X