Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Experimental and Numerical Study of Diesel HCCI Combustion by Multi-Pulse Injection

2008-04-14
2008-01-0059
Diesel-fueled HCCI combustion was achieved by multi-pulse injection before top dead center (TDC). However, the multi-pulse injections strategies have not been sufficiently studied previously due to the large number of parameters to be considered. In the present work, a series of multi-pulse injection modes with four or five pulses in each mode are designed, and their effects on diesel HCCI Combustion are experimentally studied. The results showed that the HCCI diesel combustion was extremely sensitive to injection mode. There were many modes to achieve very low NOx and smoke emissions, but the injection parameters of these modes must be optimized for higher thermal efficiency. A micro-genetic algorithm coupled with a modified 3D engine simulation code is utilized to optimize the injection parameters including the injection pressure, start-of-first-injection timing (SOI), fuel mass in each pulse injection and dwell time between consecutive pulse injections.
Technical Paper

High Density-Low Temperature Combustion in Diesel Engine Based on Technologies of Variable Boost Pressure and Intake Valve Timing

2009-06-15
2009-01-1911
A concept of high density-low temperature combustion (HD-LTC) is put forward in this paper, showing potential of its high thermal efficiency and very low engine-out emissions by engine experimental and CFD modeling study. A single cylinder test engine has been built-up equipped with mechanisms of variable boost pressure and intake valve closing timing (IVCT). By delaying IVCT and raising boost pressure to certain values according to engine loads, the in-cylinder charge density is regulated much higher than in conventional engines. It is found that the high charge density can play the role of rising of heat capacity as exhaust gas recirculation (EGR) does. Thereby low temperature combustion is realized with less EGR (about 18~19% oxygen concentration) to achieve very low NOx and soot emissions, which is extremely important at high and full loads.
Technical Paper

Effect of Charge Density and Oxygen Concentration on Emissions in a High Density-LTC Diesel Engine by Retarding Intake Valve Timing and Raising Boost Pressure

2010-04-12
2010-01-1261
Engine experiments and CFD modeling studies have been carried out and shown that high density-low temperature combustion (H Density-LTC) has the potential of realizing high thermal efficiency and very low engine-out emissions at high and full engine loads. Parametric studies were conducted to explore the mechanism of formation of pollutants in high charge density in this paper. It was found that high charge density was normally favorable to spray atomization, evaporation and fuel/air mixing throughout the entire combustion process, but there was a turning value of charge density above which the improvement of thermal efficiency was reduced. The conversion of CO to CO₂ was accelerated and CO emission was decreased with increasing charge density, which was also proved to be beneficial to re-oxidation of soot formed. The oxygen concentration brings a conflict effect to NOx emissions and exhaust soot. The high density combustion relieved the conflict effect of oxygen concentration.
Technical Paper

A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-Pulse Injection and the BUMP Combustion Chamber

2003-03-03
2003-01-0741
This paper presents a compound combustion technology of Premixed Combustion and “Lean Diffusion Combustion” for realizing the concept of HCCI combustion in a D I diesel engine. The premixed combustion is achieved by the technology of multi-pulse fuel injection. The start of pulse injection, injection-pulse number, injection period of each pulse and the dwell time between the injection pulses are controlled. The objective of controlling the pulse injection is to limit the spray penetration of the pulse injection so that the fuel will not impinge on the cylinder liner, and to enhance the mixing rate of each fuel parcel by promoting the disturbance to the fuel parcels. The last or main injection pulse is set around TDC. A flash mixing technology is developed from the development of a so-called BUMP combustion chamber, which is designed with some special bump rings.
Technical Paper

A Study On the Determination of the Amount of Pilot Injection and Rich and Lean Boundaries of the Pre-Mixed CNG/Air Mixture for a CNG/Diesel Dual-Fuel Engine

2003-03-03
2003-01-0765
A sequential port injection, lean-burn, fully electronically-controlled compressed natural gas (CNG)/Diesel dual-fuel engine has been developed based on a turbo-charged and inter-cooled direct injection (D.I.) diesel engine. During the optimization of engine overall performance, the effects of pilot diesel and pre-mixed CNG/air mixture equivalence ratio on emissions (CO, HC, NOx, soot), knocking, misfire and fuel economy are studied. The rich and lean boundaries of the pre-mixed CNG/air mixture versus engine load are also provided, considering the acceptable values of NOx and THC emissions, respectively. It is interesting to find that there is a critical amount of pilot diesel for each load and speed point, which proved to be the optimum amount of pilot fuel. Any decrease in the amount of pilot diesel from this optimum amount results in an increase of NOx emissions, because the pre-mixed CNG/air mixture must be made richer, otherwise THC emissions would increase.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Kinetic Modeling of Soot Formation with Highlight in Effects of Surface Activity on Soot Growth for Diesel Engine Partially Premixed Combustion

2013-04-08
2013-01-1104
In this study, Partially Premixed Combustion (PPC) on a modified heavy-duty diesel engine was realized by hybrid combustion control strategy with flexible fuel injection timing, injection rate pattern modulation and high ratio of exhaust gas recirculation (EGR) at different engine loads. It features with different degrees of fuel/air mixture stratifications. The very low soot emissions of the experiments called for further understanding on soot formation mechanism so that to promote the capability of prediction. A new soot model was developed with highlight in effects of surface activity on soot growth for soot formation prediction in partially premixed combustion diesel engine. According to previous results from literatures on the importance of acetylene as growth specie of PAH and soot surface growth, a gas-phase reduced kinetic model of acetylene formation was developed and integrated into the new soot model.
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
X