Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Characterization of Commercial Vehicle Crashes and Driver Injury

2011-09-13
2011-01-2294
About 360,000 commercial trucks are involved in traffic accidents in the United States per year. Approximately 20,000 truck drivers are injured in those crashes. This study examines traffic crashes of the commercial truck fleet for model years 2000 to 2008 contained in the Trucks Involved in Fatal Accidents (TIFA) and General Estimates System (GES) databases. Specifically, driver injuries, using the KABCO scale (injury severity), were analyzed to determine the association with crash type as well as with the truck configuration. A crash typology was developed to identify crash types, including the type of other vehicle or object struck as well as the impact point on the truck, associated with the most serious injuries. This research focuses on the frequency of commercial vehicle accidents and driver injury levels rather than the cause of the vehicle crash. Based on these findings, example cases from LTCCS were selected. These examples typify the most frequent crashes and injuries.
Technical Paper

Real-World Safety Effect of Roll Stability Control

2013-09-24
2013-01-2392
Heavy truck rollover remains a primary factor in truck driver fatalities and injury. Roll stability control (RSC) and electronic stability control (ESC) are technologies that have been introduced to reduce the incidence of rollover in heavy truck crashes. This report provides an analysis of the real-world experience of a large for-hire company that introduced RSC into its fleet starting in 2004. The carrier provided a well-documented set of data on the operations of its truck-tractors, including both those equipped with RSC and those that did not have RSC installed. The purpose of the analysis is to determine the effect of RSC on the probability of rollover, as well as to identify other factors that either contribute to rollover or help reduce its incidence. This study presents results on the incidence of rollover both in terms of rollovers per 100 million miles traveled and the percentage of crashes that resulted in rollover.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

2015-09-29
2015-01-2868
This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

Underride in Fatal Rear-End Truck Crashes

2000-12-04
2000-01-3521
For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
X