Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Use of Rigid and Deformable Child Restraint Seats in Finite Element Simulations of Frontal Crashes

2006-04-03
2006-01-1141
This research focuses on the injury potential of children seated in forward facing child restraint seats during frontal vehicle crashes. Experimental sled tests were completed in accordance to the Federal Motor Vehicle Safety Standard 213 using a Hybrid III three-year-old dummy in a five point child restraint system. A full vehicle crash test was completed in accordance to the Canadian Motor Vehicle Safety Standard 208 with the addition of a three-year-old Hybrid III crash test dummy, seated behind the passenger seat, restrained in the identical five-point child safety seat. Different child restraint finite element models were developed incorporating a subset of the apparatus used in the two experimental tests and simulated using LS-DYNA.
Technical Paper

A Comparison of the Head and Neck Injury Parameters on a TNO P3 and a Three-year-old Hybrid III Child Dummies From Numerical Simulations

2005-04-11
2005-01-1303
This study focuses on the behaviour of child dummies, namely a 3-year-old Hybrid III and a TNO P3, in terms of head and neck injury potential in forward and rearward facing child safety seats in frontal vehicle crash. Numerical simulations were conducted using a moderate acceleration pulse acquired from the National Transportation Biomechanics Research Center database with a closing speed of 41 km/h. A finite element model incorporating a three-year-old Hybrid III dummy, in a five-point convertible child safety seat was developed and the prescribed acceleration pulse was simulated using LS-DYNA. A multi-body dynamic simulation, utilizing the identical acceleration pulse, was completed for the three-year-old P3 dummy in a four-point convertible child safety seat using MADYMO. Similarities and differences were noted in the numerical observations for both the P3 and Hybrid III dummies which are presented within the paper.
X