Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Comparison of the Kinematics of a Child Finite Element Model and the HYBRID III 3-Year-Old Dummies in Frontal Crashes

2007-04-16
2007-01-0977
The THUMS (Total HUman Model for Safety) 3-year-old child finite element (FE) model was developed by Toyota Central R&D Labs (TCRDL) by model-based scaling from the AM50 (50 percentile male) human FE model. The objective of this paper is to present a comparison between the kinematics of a child FE model developed from the adult THUMS model and a HYRID III 3-year-old child dummy using observations from numerical simulations of a CMVSS 208 frontal crash. Both the child models were positioned in a forward facing, five point child restraint systems (CRS). An acceleration pulse acquired from a vehicle crash test in accordance with Canadian Motor Vehicle Safety Standards (CMVSS) 208 was applied to the seat buck supporting the CRS. Numerical simulations with both the child model and the Hybrid III child dummy were conducted using LS-DYNA version 970.
Technical Paper

Responses of the Q3, Hybrid III and a Three Year Old Child Finite Element Model Under a Simulated 213 Test

2008-04-14
2008-01-1121
This research focuses on the response of the Q3, Hybrid III 3-year-old dummy and a child finite element model in a simulated 213 sled test. The Q3 and Hybrid III 3-year old child finite element models were developed by First Technology Safety Systems. The 3-year-old child finite element model was developed by Nagoya University by model-based scaling from the AM50 (50 percentile male) total human model for safety. The child models were positioned in a forward facing, five-point child restraint system using Finite Element Model Builder. An acceleration pulse acquired from an experimental 213 sled test, which was completed following the guidelines outlined in the Federal Motor Vehicle Safety Standard 213 using a Hybrid III 3-year-old dummy, was applied to the seat buck supporting the child restraint seat. The numerical simulations utilizing the Q3, Hybrid III 3-year-old and the child finite element model were conducted using the explicit non-linear finite element code LS-DYNA.
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
Technical Paper

Use of Rigid and Deformable Child Restraint Seats in Finite Element Simulations of Frontal Crashes

2006-04-03
2006-01-1141
This research focuses on the injury potential of children seated in forward facing child restraint seats during frontal vehicle crashes. Experimental sled tests were completed in accordance to the Federal Motor Vehicle Safety Standard 213 using a Hybrid III three-year-old dummy in a five point child restraint system. A full vehicle crash test was completed in accordance to the Canadian Motor Vehicle Safety Standard 208 with the addition of a three-year-old Hybrid III crash test dummy, seated behind the passenger seat, restrained in the identical five-point child safety seat. Different child restraint finite element models were developed incorporating a subset of the apparatus used in the two experimental tests and simulated using LS-DYNA.
Technical Paper

A Comparison of the Head and Neck Injury Parameters on a TNO P3 and a Three-year-old Hybrid III Child Dummies From Numerical Simulations

2005-04-11
2005-01-1303
This study focuses on the behaviour of child dummies, namely a 3-year-old Hybrid III and a TNO P3, in terms of head and neck injury potential in forward and rearward facing child safety seats in frontal vehicle crash. Numerical simulations were conducted using a moderate acceleration pulse acquired from the National Transportation Biomechanics Research Center database with a closing speed of 41 km/h. A finite element model incorporating a three-year-old Hybrid III dummy, in a five-point convertible child safety seat was developed and the prescribed acceleration pulse was simulated using LS-DYNA. A multi-body dynamic simulation, utilizing the identical acceleration pulse, was completed for the three-year-old P3 dummy in a four-point convertible child safety seat using MADYMO. Similarities and differences were noted in the numerical observations for both the P3 and Hybrid III dummies which are presented within the paper.
Journal Article

Experimental Investigation of Axial Cutting of AA6061 Extrusions under a Tension Deformation Mode

2020-04-14
2020-01-0206
A plethora of applications in the transportation industry for both vehicular and roadside safety hardware, especially seatbelts, harnesses and restraints, rely on tensile loading to dissipate energy and minimize injury. There are disadvantages to the current state-of-the-art for these tensile energy absorbers, including erratic force-displacement responses and low tensile force efficiencies (TFE). Axial cutting was extensively demonstrated by researchers at the University of Windsor to maintain a stable reaction force, although exclusively under compressive loading. A novel apparatus was investigated in this study which utilized axial cutting under a tensile loading condition to absorb energy. A parametric scope was chosen to include circular AA6061 extrusions in both T4 and T6 temper conditions with an outer diameter of 63.5 mm and wall thickness of 3.18 mm.
X