Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Friction-Induced Vibrations of Window Sealing Systems

2005-05-16
2005-01-2540
The problem of squealing from vehicle windows opened or closed in partly wet conditions has been investigated. Experiments were conducted using a glass-run seal sample and a tangentially moving glass piece installed on a test bench. The instantaneous velocity of the glass was measured along with the total dynamic frictional force for varying normal static loads and sprayed-water distributions. The characteristics of squeal vibrations and the influence of normal load and water distribution are discussed. The relation between friction force and speed was also investigated. An idealized model consisting of a one-dimensional continuous rod excited by a moving frictional point force was then investigated. The method of averaging was applied to solve the nonlinear equations of motion. The response became unstable when the magnitude of the negative slope and the normal force were large regardless of boundary conditions.
Journal Article

Feedforward Harmonic Suppression for Noise Control of Piezoelectrically Driven Synthetic Jet Actuators

2023-05-08
2023-01-1042
Piezoelectrically driven Synthetic Jet Actuators (SJAs) are a class of pulsatile flow generation devices that promises to improve upon steady forced cooling methods in air flow generation, surface cleaning and heat transfer applications. Their acoustic emissions and vibrations, an intrinsic by-product of their operation, needs to be mitigated for applications in noise-sensitive contexts. Already used for aerodynamic control [1, 2], thrust vectoring [3], spray control [4], and heat transfer [5, 6], they are increasingly being considered for sensor lens cleaning in automobiles. In this study, the sound generation mechanisms of SJAs are discussed and an active noise reduction method is proposed and evaluated. Driven with a single frequency sinusoidal input, SJAs produce acoustic emissions at harmonic frequencies within the frequency range of speech communication.
X