Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
Journal Article

Fuel Effects on Knock in a Highly Boosted Direct Injection Spark Ignition Engine

2012-09-10
2012-01-1634
Extensive tests have been carried out in a single-cylinder Direct Injection Spark Ignition (DISI) engine using up to fifteen different fuels at inlet pressure of up to 3.4 bar abs. to study fuel effects as well as inlet pressure effects on knock. In addition fuel effects on particulate emissions at part-throttle were measured. Fuel anti-knock quality does not correlate with MON and is best described by the Octane Index, OI = RON-KS where S = RON -MON is the sensitivity of the fuel and K is a constant depending on the engine pressure/temperature regime. The RON of the fuels considered was in the range between 95 and 105 and the sensitivity between 8 and 13. K is negative at all the conditions tested, i.e., for a given RON, a higher sensitivity fuel has better anti-knock quality. K decreases with increasing intake pressure and more generally, decreases as Tcomp₁₅, the temperature of the unburned gas at a pressure of 15 bar decreases.
X