Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Measurement of Dry Soot and Particulate Matter from Two-Stroke and Four-Stroke Snowmobiles

2010-09-28
2010-32-0042
Recent increases in emissions regulations within the snowmobile industry have led to significant advancements in fuel, exhaust, and control systems on snowmobiles. However, particulate matter is currently an unregulated exhaust component of snowmobile engines. The measurement of dry soot as well as particulate matter from snowmobiles is the focus of this paper. Two industry-representative snowmobiles were chosen for this research which included a 2006 Yamaha Nytro carbureted four-stroke and a 2009 Ski-Doo MX-Z direct-injected two-stroke. Measurements for each snowmobile included gaseous emissions (CO₂, CO, NOx, O₂, and THC), particulate matter collected on quartz filters, and dry soot measured using an AVL Micro Soot Sensor. Each snowmobile was tested over the industry-standard five-mode emissions certification test cycle to determine the emissions, dry soot, and particulate matter levels from idle to wide open throttle (full-load).
Technical Paper

Design and Testing of a Four-Stroke, EFI Snowmobile with Catalytic Exhaust Treatment

2001-09-24
2001-01-3657
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive and environmentally friendly. The following paper describes the conversion process in detail with actual engine test data. The hydrocarbon emissions of the new, four-stroke snowmobile are 98% lower than current, production, two-stroke models. The noise production of the four-stroke snowmobile was 68 dBA during an independent wide open throttle acceleration test. If the four-stroke snowmobile were to replace all current, two-stroke snowmobiles in Yellowstone National Park (YNP), the vehicles would only produce 16% of the combined automobile and snowmobile hydrocarbon emissions compared to the current 93% produced by two-stroke snowmobiles.
Technical Paper

Development of a Micro-Engine Testing System

2012-10-23
2012-32-0105
A test stand was developed to evaluate an 11.5 cc, two-stroke, internal combustion engine in anticipation of future combustion system modifications. Detailed engine testing and analysis often requires complex, specialized, and expensive equipment, which can be problematic for research budgets. This problem is compounded by the fact that testing “micro” engines involves low flow rates, high rotational speeds, and compact dimensions which demand high-accuracy, high-speed, and compact measurement systems. On a limited budget, the task of developing a micro-engine testing system for advanced development appears quite challenging, but with careful component selection it can be accomplished. The anticipated engine investigation includes performance testing, fuel system calibration, and combustion analysis. To complete this testing, a custom test system was developed.
Technical Paper

Noise and Emission Reduction Strategies for a Snowmobile

2000-09-11
2000-01-2573
The following paper discusses alternative strategies for reducing noise and emission production from a two-stroke snowmobile. Electric, two-stroke and four-stroke solutions were analyzed and considered for entry in the Clean Snowmobile Challenge (CSC) 2000. A two-stroke solution was utilized primarily due to time constraints. Complete snowmobile competition results are provided. The electric solution, while the most effective at reducing emissions, is negatively impacted by weight and cost. A modified two-stroke solution, limited by cost and complexity, does not provide the required improvements in emissions. A four-stroke solution reduces noise and emissions and provides an acceptable trade-off between noise, emissions, performance and cost.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

2015-04-14
2015-01-0965
In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
X