Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Development and Experimental Validation of a Combustion Model with Detailed Chemistry for Knock Predictions

2007-04-16
2007-01-0938
Aim of this work is to develop a general purpose model for combustion and knocking prediction in SI engines, by coupling a thermo-fluid dynamic model for engine simulation with a general detailed kinetic scheme, including the low-temperature oxidation mechanism, for the prediction of the auto-ignition behavior of hydrocarbons. A quasi-D approach is used to describe the in-cylinder thermodynamic processes, applying the conservation of mass and energy over the cylinder volume, modeled as a single open system. The complex chemistry model has been embedded into the code, by using the same integration algorithm for the conservation equations and the reacting species, and taking into account their mutual interaction in the energy balance. A flame area evolution predictive approach is used to evaluate the turbulent flame front propagation as function of the engine operating parameters.
Technical Paper

Kinetic Modeling of Knock Properties in Internal Combustion Engines

2006-10-16
2006-01-3239
This work presents a general model for the prediction of octane numbers and knock propensity of different fuels in SI engines. A detailed kinetic scheme of hydrocarbon oxidation is coupled with a two zone, 1-D thermo-fluid dynamic simulation code (GASDYN) [1]. The validation of the kinetic scheme is discussed on the basis of recent experimental measurements. CFR engine simulations for RON and MON evaluation are presented first to demonstrate the capabilities of the coupled model. The model is then used to compare the knock propensity of a gasoline “surrogate” (a pure hydrocarbon mixture) and PRFs in a current commercial engine, resulting in a simulation of “real world” octane number determination, such as Bench Octane Number (BON). The simulation results agree qualitatively with typical experimental trends.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

2018-04-03
2018-01-0281
A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Technical Paper

Development of a CFD Approach to Model Fuel-Air Mixing in Gasoline Direct-Injection Engines

2012-04-16
2012-01-0146
Direct-injection represents a consolidated technology to increase performance and efficiency in spark-ignition engines. It reduces the knock tendency and makes engine downsizing possible through the use of turbocharging. Better control of CO and HC emissions at cold-start is also ensured since there is no wall-impingement in the intake port. However, to take advantages of all the theoretical benefits derived from GDI technology, detailed investigations of both fuel-air mixing and combustion processes are necessary to extend the stratified charge operations in the engine map and to reduce soot emissions, that are now severely regulated by emission standards. In this work, the authors developed a CFD methodology to investigate and optimize the fuel-air mixing process in direct-injection, spark-ignition engines. The Eulerian-Lagrangian approach is used to model the evolution of the fuel spray emerging from a multi-hole injector.
Technical Paper

Secondary Air Injection in the Exhaust After-Treatment System of S.I. Engines: 1D Fluid Dynamic Modeling and Experimental Investigation

2003-03-03
2003-01-0366
The paper describes the experimental and simulation work recently carried out to investigate the effects of secondary air injection on the emission conversion in the exhaust after-treatment system of a S.I. automotive engine. The modeling of the 1D unsteady reacting flows in the complete exhaust system of a spark ignition engine, designed to satisfy the Euro IV limits, has been performed including the secondary air injection system, to predict the possible shortening of catalyst light-off time and the speed-up of the after-treatment system warm-up. The transport of chemical species with reactions in gas phase (post-oxidation of unburned HC in the exhaust manifold) and in solid phase (conversion of pollutants in the catalyst) with and without secondary air has been simulated by the 1D thermo-fluid dynamic model GASDYN, developed by the authors.
Technical Paper

CFD Modelling of Hydrogen-Fueled SI Engines for Light-Duty Applications

2023-08-28
2023-24-0017
The employment of hydrogen as energy carrier for transportation sector represents a significant challenge for powertrains. Spark-ignition (SI) engines are feasible and low-cost devices to convert the hydrogen chemical energy into mechanical work. However, significant efforts are needed to successfully retrofit the available configurations. The computational fluid dynamics (CFD) modelling represents a useful tool to support experiments, clarifying the impact of the engine characteristics on both the mixture preparation and the combustion development. In this work, a CFD investigation is carried out on typical light-duty SI engine configurations, exploring the two main strategies of hydrogen addition: port fuel injection (PFI) and direct injection (DI). The purpose is to assess the behaviour of widely-used numerical models and methodologies when hydrogen is employed instead of traditional carbon-based fuels.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Technical Paper

CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine

2024-04-09
2024-01-2102
The abatement of carbon dioxide and pollutant emissions on motorbike spark-ignition (SI) engines is a challenging task, considering the small size, the low cost and the high power-to-weight ratio required by the market for such powertrain. In this context, the passive pre-chamber (PPC) technology is an attractive solution. The combustion duration can be reduced by igniting the air-fuel mixture inside a small volume connected to the cylinder, unfolding the way to high engine efficiencies without penalization of the peak performance. Moreover, no injectors are needed inside the PPC, guaranteeing a cheap and fast retrofitting of the existing fleet. In this work, a 3D computational fluid dynamics (CFD) investigation is carried out over an experimental configuration of motorbike SI engine, operated at fixed operating conditions with both traditional and PPC configurations.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
X