Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines

2015-04-14
2015-01-0395
Swirling flows are very dominant in applied technical problems, especially in IC engines, and their prediction requires rather sophisticated modeling. An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Menter' original k - ω SST turbulence model. The modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity; therefore, the filtering technique helps the turbulence model to adapt in accordance with the mesh resolution and the scales to capture.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Journal Article

CFD Investigation of the Effect of Fluid-Structure Interaction on the Transmission Loss of ICE Silencers

2016-06-15
2016-01-1815
In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
Journal Article

Fluid Dynamic Optimization of a Moto3TM Engine by Means of 1D and 1D-3D Simulations

2016-04-05
2016-01-0570
In this work an integration between a 1D code (Gasdyn) with a CFD code (OpenFOAM®) has been applied to improve the performance of a Moto3TM engine. The four-stroke, single cylinder S.I. engine was modeled, in order to predict the wave motion in the intake and exhaust systems and study how it affects the cylinder gas exchange process. The engine considered was characterized by having an air induction system with integrated filter cartridge, air-box and intake runner, resulting in a complex air-path form the intake mouth to the intake valves, which presents critical aspects when a 1D modeling is addressed. This paper presents a combined and integrated simulation, in which the intake systems was modeled as a 3D geometry whereas the exhaust system, which presented a simpler geometry, was modeled by means of a 1D approach.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

Modeling of Silencers for I.C. Engine Intake and Exhaust Systems by Means of an Integrated 1D-multiD Approach

2008-04-14
2008-01-0677
This paper describes the development of a fully 1D and of a 1D-multiD integrated approach for the simulation of complex muffler configurations. The fully 1D approach aims to model the muffler recurring to an equivalent net of 1D pipes. An expansion chamber with offset inlet and outlet pipes was modeled with this preocedure and the resuts compared to CFD simulations, pointing out some critical aspects in the TL prediction. The HLLC Riemann solver and its extension to the second order were implemented both in the 1D and multiD models and exploited to handle the interface between the calculation domains. The integrated 1D-multiD approach was used afterwards to predict the transmission loss of more complex geometries such as series chambers with extended inlet and outlet pipes and with flow reversals. A new procedure has been adopted to calculate the transmission loss, imposing a pressure impulse at the inlet and evaluating the response of the muffler.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems

2007-04-16
2007-01-0495
This work describes the development, application and coupling of two different numerical codes, respectively based on a 1D (Gasdyn) and 3D (OpenFOAM) schematization of the geometrical domain. They have been adopted for the prediction of the wave motion inside the intake and the exhaust systems of internal combustion engines. The HLLC Riemann solver has been implemented both in the CFD and the 1D codes to solve the Euler system of equations, in order to operate with the same solver on the different calculation domains. Moreover, the HLLC solver has been applied to treat the boundary conditions at the interface between the two domains, in such a way to allow the propagation of flow disuniformities through the domain interface, without affecting the solution accuracy. The hybrid approach was used for the simulation of two different test cases: a complex 5 into 1 pipe junction of a high performance V10 engine and a Venturi tube plus a Helmholtz resonator of a single cylinder S.I. engine.
Technical Paper

Development and Experimental Validation of a Combustion Model with Detailed Chemistry for Knock Predictions

2007-04-16
2007-01-0938
Aim of this work is to develop a general purpose model for combustion and knocking prediction in SI engines, by coupling a thermo-fluid dynamic model for engine simulation with a general detailed kinetic scheme, including the low-temperature oxidation mechanism, for the prediction of the auto-ignition behavior of hydrocarbons. A quasi-D approach is used to describe the in-cylinder thermodynamic processes, applying the conservation of mass and energy over the cylinder volume, modeled as a single open system. The complex chemistry model has been embedded into the code, by using the same integration algorithm for the conservation equations and the reacting species, and taking into account their mutual interaction in the energy balance. A flame area evolution predictive approach is used to evaluate the turbulent flame front propagation as function of the engine operating parameters.
Technical Paper

Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems

2010-04-12
2010-01-1194
This paper describes a detailed analysis of the unsteady flows in the intake and exhaust systems of a modern four-cylinder, turbocharged Diesel engine by means of advanced numerical tools and experimental measurements. In particular, a 1D-3D integrated fluid dynamic model, based on the GASDYN (1D) and Lib-ICE (3D) codes, has been developed and applied for the schematization of the geometrical domain and the prediction of the wave motion in the whole intake and the exhaust systems, including the air cleaner, the intercooler, the after-treatment devices and the silencers. Firstly, a detailed 1D simulation has been carried out to predict the pressure pulses, average pressures and temperatures in several cross-sections of the pipe systems for different speeds and loads, considering the complex geometry of the air filter, the intake manifold, the intercooler and the exhaust manifold.
Technical Paper

Development of an Open Source C++ Toolkit for Full-Scale Diesel Particulate Filter Simulation

2009-09-13
2009-24-0137
Multi-dimensional simulation of hydrodynamics in full-scale wall-flow Diesel Particulate Filters by GpenFQAM®, an open-source C++ object-oriented CFD code, is presented. A new fast and efficient parallel numerical solver has been developed by authors to simulate flows through porous media and it has been tested for the simulation of diesel particulate filters; errors caused by discretization of filter monoliths have been corrected by the formulation of a correction factor, that has been included in the solver. A set of experimental data, available from literature, has been used for code validation.
Technical Paper

Modeling of silencers for internal combustion engines: 1D-3D coupling, network of 1D elements and a generic 3D cell approach

2009-09-13
2009-24-0133
Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of multiple approaches, ranging from fully 3D to simplified 1D models. In this work it will be described the development and application of hybrid 1D-3D approaches and an innovative one based on the 3D cell element. This is designed to model the acoustics of intake and exhaust system components used in internal combustion engines. Models of components are built using a network or grid of 3D cells based primarily on the geometry of the system. This means that these models can be built without fundamental knowledge of acoustically equivalent systems making their range of application larger as well as making them simpler to construct. Due to the 3D nature of these models it is also possible to predict higher order modes and improve the accuracy of models at high frequencies compared to conventional plane wave approaches.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

An Integrated Simulation Model for the Prediction of GDI Engine Cylinder Emissions and Exhaust After-Treatment System Performance

2004-03-08
2004-01-0043
The paper describes the development and validation of a quasi-dimensional multi-zone combustion model for Gasoline Direct Injection engines. The model has been embedded in the 1D thermo-fluid-dynamic code for the simulation of the whole engine system named GASDYN and developed by the authors [1, 2 and 3]. The GDI engine combustion model solves mass, energy and species equations using a 4th order Runge-Kutta integration method; the fuel spray is initially divided into a number of zones fixed regardless of the injected amount and the time step, considering the following break-up, droplet evaporation and air entrainment in each single zone. Experimental correlations have been used for the spray penetration and spatial information. Once the ignition begins it is assumed that the flame propagates spherically, evaluating its velocity by means of a fractal combustion approach and considering the local air-fuel ratio, which is the result of the spray evolution within the combustion chamber.
X