Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation of Pre-Chambers in an Engine Combustion Chamber Using Available Software

2003-03-03
2003-01-0373
The presented work deals with possibilities of modeling divided combustion chamber using available 1-D/0-D software. It is usable for indirect injection diesel engines, gas SI engines with pre-chambers for very lean mixture ignition, etc. The model solves all layouts where main cylinder is connected to additional volumes. This connection allows for heat and energy transfer between connected parts. The application of standard ROHR functions (Wiebe, etc.) which are normalized to constant fuel mass is limited. A new marker gas concentration algorithm is proposed for the use of empiric ROHR functions. The standard approach (without proposed algorithm) was tested modeling large-bore gas SI engine with pre-chamber where the mixture is ignited and experimental direct injection hydrogen one-cylinder engine with an additional volume between fuel injector and the cylinder itself to protect the injector from very high pressures and temperatures in the cylinder.
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Technical Paper

Development of a Pre-Chamber Ignition System for Light Duty Truck Engine

2018-04-03
2018-01-1147
In this article the development of a combustion system with a fuel-scavenged pre-chamber is described. Such a system is commonly used in large-bore engines operated with extremely lean mixtures. The authors implemented the scavenged pre-chamber into a light duty truck-size engine with a bore of 102 mm. The lean burn strategy is intended to achieve very low nitrogen oxide (NOx) emissions at low load. At full load a stoichiometric mixture strategy is applied to achieve sufficient power density while simultaneously enabling the use of a relatively simple three-way catalytic converter for exhaust gas aftertreatment. This work outlines the pre-chamber design features and introduces the results of an experimental investigation of the effect of pre-chamber ignition on a single cylinder testing engine.
X