Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Study of Pressure Wave Supercharger Potential using a 1-D and a 0-D Approach

2011-04-12
2011-01-1143
The objective of this paper is to complete a thorough investigation of the pressure wave supercharger (PWS) to explore the potential of this technology in engine applications. The PWS is a non-steady flow device that uses shock waves to pressurize fluids by transferring energy from a high-pressure flow to a low-pressure flow without separation by physical walls. The paper introduces a 1-D model of PWS in GT-SUITE calibrated by experiments on steady flow test rig. The 1-D model respects both exhaust and fresh air in each of the cells, friction and heat transfer in the cells as well as the continual opening and closing of the cells. Moreover, the cell wall temperature is computed and the leakage flow between the cells and housings modeled. The limits of PWS operation regarding pressures, temperatures and mass flows are first mapped on the virtual test rig utilizing the calibrated 1-D code based on the Mazda Comprex device.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
X