Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A STUDY OF DIFFERENT EGR ROUTES ON A HEAVY DUTY STOICHIOMETRIC NATURAL GAS ENGINE

2009-09-13
2009-24-0096
Exhaust gas recirculation (EGR) is a suitable strategy to optimize heavy duty natural gas (NG) engines. EGR could be utilized to have high specific power, with low thermal stress, but also to increase engine efficiency. NG fuelling permits a large flexibility in EGR system design, due to very clean engine exhaust. In this paper, three types of EGR routes have been studied. The best set up, which can introduce the highest EGR quantities, to provide the best reduction of the thermal load at rated power, was found to be a cooled low pressure EGR route. However high low pressure route (HLPR) could give the possibility to increase engine efficiency by modulating the power output in the widest un-throttled range operation.
Technical Paper

An Experimental-Numerical Approach to Reduce Emissions of a Dual Fuel Diesel-Natural Gas Engine

2009-09-13
2009-24-0099
Conversion from diesel to dual fuel (diesel and natural gas) operation may represent an attractive retrofit technique to get a better PM-NOx trade-off in a diesel engine, with no major modifications of the original design. In the proposed paper, an Euro 2 heavy duty diesel engine, converted for dual fuelling, has been studied and tested to reduce pollutant emissions. Throttled stoichiometric with EGR and lean burn technologies have been selected as control strategies. A mixed experimental-numerical approach has been utilized to analyze the engine behavior by varying key operating conditions such as throttling, natural gas/diesel oil percentage and EGR. The model, based on a 3D approach, has been used mainly to understand the evolution of the distribution of the most important parameters in the combustion chamber.
Technical Paper

Analysis of Combustion Instability Phenomena in a CNG Fueled Heavy-Duty Turbocharged Engine

2001-05-07
2001-01-1907
The use of Compressed Natural Gas as an alternative fuel in urban transportation is nearly established and represents an efficient short and medium term solution to face with urban air pollution. However, in order to completely exploit its potential, the engine needs to be specifically designed to operate with this fuel. In the latest years, the authors have investigated the performances of a Heavy Duty Turbocharged CNG fuelled engine both experimentally and by using some analytical tools specifically developed by them which have been used for the engine optimisation. In the present paper the simulation approach has been enlarged by means of a co-operative use of a CFD code and experimental analysis on the actual engine. The numerical simulation of combustion process has, in fact, been used, to interpret series of pressure cycles, aiming to analyse how cyclic fluctuations influence engine behaviour in terms of combustion efficiency and temperature and pollutant distribution.
Technical Paper

Effects of Low Temperature Combustion on Particle and Gaseous Emission of a Dual Fuel Light Duty Engine

2017-09-04
2017-24-0081
In recent years the use of alternative fuels for internal combustion engines has had a strong push coming from both technical and economic-environmental aspects. Among these, gaseous fuels such as liquefied petroleum gas and natural gas have occupied a segment no longer negligible in the automotive industry, thanks to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions and cost effectiveness. On the other hand, diesel engines still represent the reference category among the internal combustion engines in terms of fuel consumptions. The possibility offered by the dual fuel systems, to combine the efficiency and performance of a diesel engine with the environmental advantages of gaseous fuels, has been long investigated. However the simple replacement of diesel fuel with natural gas does not allow to optimize the performance of the engine due to the high THC emissions particularly at lower loads.
Technical Paper

Effect of Natural Gas/Hydrogen Blends on Spark Ignition Stoichiometric Engine Efficiency

2011-09-11
2011-24-0121
Hydrogen (H₂) added to natural gas (NG), improves the combustion process of the air-fuel mixture. This gives the potentiality to develop engines with better performance and lower environmental impact. In any case how hydrogen is produced represents a crucial aspect. In general, if H₂ is produced utilizing fossil fuels and not renewable or nuclear sources, the environmental benefit of CO₂ reduction could be reduced. In this paper two engines, a light-duty (LD) and a heavy-duty (HD), were tested in stoichiometric conditions. The engines were fuelled with NG and with two blends of NG with a 20% and a 40% by volume of H₂, respectively named NG/H₂ 20% and NG/H₂ 40%. The light-duty engine was tested at different loads and speeds, with spark advance set by the electronic control unit (ECU). The ECU actuated a retarded ignition, especially at low load. With the heavy-duty engine, the tests were carried out only at high load.
Technical Paper

Experimental Analysis of a Natural Gas Fueled Engine and 1-D Simulation of VVT and VVA Strategies

2013-09-08
2013-24-0111
The paper deals with experimental testing of a natural gas fueled engine. Break Specific fuel Consumption (BSFC), Average Mass Flow Rate, Instantaneous Cylinder Pressure and some wall temperatures have been measured at some full and part load operating conditions. The results of this experimental activity, still in progress, have been used to calibrate a 1D-flow engine's model. Then the effects of some VVA strategies have been theoretically studied through the validated model. With the aim of maximizing the full load engine's torque, a genetic algorithm was used to calculate the optimized intake and exhaust valves timing angles. Various VVA strategies were compared at part-load in order to reduce brake specific fuel consumption.
X