Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

The Potential for Thermo-Electric Regeneration of Energy in Vehicles

2009-04-20
2009-01-1333
The pursuit of improved fuel economy is becoming an increasingly important objective for automotive manufacturers. The field of thermo-electrics is highlighted as a promising technology. The figure of merit, Z is the primary measure of the effectiveness of a thermo-electric material, and the values now being offered by researchers have reached the level where new applications become attractive. It is feasible to consider such modules incorporated into a thermoelectric generator to recover waste heat from exhaust gas flow – an available energy stream that has traditionally been neglected as unusable. As a precursor to a costly experimental study it is desirable to accurately simulate the application of a thermo-electric system to a vehicle exhaust to understand both the feasibility and potential drawbacks.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

The Potential for Thermo-Electric Devices in Passenger Vehicle Applications

2010-04-12
2010-01-0833
The promise of thermo-electric (TE) technology in vehicles is a low maintenance solid state device for power generation. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. The potential to make use of an otherwise wasted flow of energy means that the overall system efficiency can be improved substantially. One of the barriers to a successful application of the technology is the device efficiency. The TE properties of even the most advanced materials are still not sufficient for a practical, cost effective device. However the rate of development is such that practical devices are likely to be available within the next fifteen years. In a previous paper [ 1 ], the potential for such a device was shown through an integrated vehicle simulation and TEG model.
Technical Paper

Improved Thermoelectric Generator Performance Using High Temperature Thermoelectric Materials

2017-03-28
2017-01-0121
Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

Integrating Formula SAE with the Engineering Curriculum

2005-04-11
2005-01-1796
The Formula SAE competition (known as Formula Student in the UK) is well established and continues to be highly popular with engineering students. The annual United Kingdom competition bears witness to this enthusiasm with a strong turnout of a total of 84 teams, including 41 teams from the United Kingdom and 21 other nations represented in 2004. In 2004 some countries, including Japan, Australia and South Korea participated for the first time. There are, for a university, significant implications of resource costs when running the Formula SAE project, mainly financial and time. Time costs in particular are acute with supervision time from university faculty groups and technicians (this latter being particularly intense). This investment needs justification in the light of other demands.
Technical Paper

Project-Based Learning in University Programmes: Getting the Best Out of Formula SAE

2006-04-03
2006-01-1046
At Sussex our attempts to introduce Formula SAE were initially slow and the results disappointing. At the same time we were developing and introducing modules in our engineering programmes that were entirely project-based, and in one case, included only e-learning, (with no lectures) after an introductory briefing. Formula SAE made faltering progress whilst it remained a voluntary activity. Support of a voluntary group by means of individually assessed projects at both undergraduate and masters level simply led to a series of unconnected technologies, although they were to prove of value later. Project-based activity in engineering had three distinctive characteristics which were to form our approach to Formula SAE: the need for a strong team ethos from the start of the project; an acceptance of the importance of process, and in particular project planning; and strong communication.
Technical Paper

An Evaluation of Formula SAE in the Context of the UK Engineering Education: Culture, Money and Space

2007-04-16
2007-01-1051
This paper presents the conclusions of a study into the way the Formula SAE project works in the UK academic sector. The motivation for the work arose during the introduction of the project at the University of Sussex when we needed to evaluate the cost effectiveness of the project as part of the engineering curriculum. The traditional view of FSAE in the UK was that it proved a valuable recruitment tool and when only a few universities offered the project to students this was clearly the case. However now that the project is more widely adopted and where smaller Departments are now supporting the project, there is a need to look more closely at the effectiveness of the project. Identification of the factors that make a successful entry has also helped in an evaluation of the resource requirements. The general conclusion from the work is that Departments must work to extract the benefits of the project through curriculum planning.
Technical Paper

The Role of New Automotive Engineering Masters Programme in the Industry in China

2016-04-05
2016-01-0171
China is the world’s largest automotive producer and has the world’s biggest automobile market. However, in the past decades, the development of China’s automotive industry has depended primarily on the foreign direct investment; domestic automakers have struggled in the lower ranks of car producers. In recent years, China’s automotive industry, supported by government policies, has been improving their Research and Development (R&D) capacity, to compete with their international peers. Against this background, China’s automotive industry requires a large number of R&D professionals who have not only a higher degree but also the applied and practical knowledge and skills of research. For the purpose of meeting the industry’s needs, a new Professional Automotive Engineering Masters Programme was launched in 2009, which aims to deliver the Masters to be the R&D professionals in the future.
Technical Paper

Unified Backwards Facing and Forwards Facing Simulation of a Hybrid Electric Vehicle using MATLAB Simscape

2015-04-14
2015-01-1215
This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

Starting and Developing an Engineering Career: The Barriers and Opportunities

2014-04-01
2014-01-0625
There has probably never been such a demand for professionally qualified engineers, and yet both the number and diversity of people entering the profession continue to decline. Worldwide, there are very many initiatives - some generally encouraging interest in the profession, and others targeting specific audiences. The reports speak of local success, but the overall picture remains discouraging. In this paper we focus on the “pipeline” from primary education through to the transition from graduate engineer into an experienced member of engineering staff. We have based the discussion on both the presentations and comments made during a panel discussion held at the 2013 SAE International Congress. The paper is intended as a summary of the points raised during that discussion and, we hope proves to be starting point for further investigation and analysis. Of particular note is the sheer diversity of initiatives, and the pressing need for role models and mentoring.
X