Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Numerical Study on the Application of Järvi Mechanism to a Four Stroke Engine for Motorcycle Application

2008-04-14
2008-01-1346
In this paper the feasibility of the application of a system conceived by Järvi to a 125 cm3, four strokes motorcycle engine built by Piaggio Company is investigated. This study was carried out using a one-dimensional model built with the well known CFD 1D code Wave and validated in a previous work. An analytical study was performed on the kinematic scheme of the mechanism in order to establish the relationship between control ramp and valve lift. The control ramp shape was then optimized accordingly with the results of the fluid dynamic analysis performed through the above mentioned Wave model.
Technical Paper

A Cooling System Effectiveness Prediction Methodology through the use of Analytical and Numerical Techniques

2010-04-12
2010-01-0623
The use of numerical techniques is widely accepted by manufactures in order to increase engine durability and performances and reduce emissions. The effective thermal load prediction is always considered a nodal point to correctly assess the coolant mass flow rate and jackets arrangement. In literature many approaches used to analyzed the in-cylinder heat transfer can be found and they can be classified as follows: methods based on the steady convective heat transfer, approaches based on the solution of the unsteady heat conduction equation by means of the knowledge of the temperature profile, approaches based on the energy conservation for the whole mass contained inside the cylinder. The purpose of this paper is to define a proper methodology to evaluate the thermal flow distribution and intensity inside the engine liner, head and coolant channel.
Technical Paper

GDI Compact Four Stroke Engine - an Advanced Concept for Vehicle Application

2004-03-08
2004-01-0039
The development trends of advanced automobile engines towards high power-to-volume and power-to-mass ratios are partially in contradiction with the requirements regarding drastically reduced fuel consumption and pollutant emission. The development way of the engine between customer acceptance and limitations by law is mainly determined by the optimization of scavenging, mixture formation and combustion characteristics, as functional base for the engine design. The paper presents a new direct injection concept and its optimization correlated with the scavenging process. The process simulation - as a base for the engine development - was carried out using concomitantly two CFD codes - FIRE and VECTIS. The main optimization parameters were the combustion chamber design, the injector location, the spray characteristics, the spark location, the injection timing and duration.
Technical Paper

Direct Injection Concept as a Support of Engine Down-Sizing

2003-03-03
2003-01-0541
The paper presents the results of a down-sizing concept implicating gasoline direct injection, which is applied to a four-stroke four-valve SI engine with a displacement of 500 ccm per cylinder. The typical features of a down sized engine such as a high level of engine speed, high power density at low fuel consumption and a low level of pollutant emission form the main targets of this study. Numerical models of the process stages have been developed in 1D and 3D CFD codes. The accurateness of the models has been proved using experimental results. The main work consisted on the application of a direct injection system to the engine. The compact engine design and the high compression ratio have been maintained resulting in a combustion chamber design without any cavities or bowls. To obtain accurate results, the simulation work has been carried out using two different CFD-codes (FIRE and VECTIS); the results have been analyzed and compared.
X