Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Application of CAE in Design Optimization of a Wet Dual Cutch Transmission and Driveline

2014-04-01
2014-01-1755
This paper describes the application of CAE tools in the design optimization of a DCT and driveline system of a passenger vehicle, with emphasis on NVH performance. The multi-body dynamics simulation tools are employed for driveline system analysis. The MBD model consists of the engine, transmission, clutch, drive shafts, tires and vehicle. The wheel slip effects are considered in the calculation of shuffle frequencies. In the analysis of gear whine, the transmission housing, gears and shafts are modeled by detailed 3-D finite element models, so that the mesh stiffness of the gears and the housing support stiffness are described more accurately. The calculated velocity spectra of the housing are presented. The prediction of gear rattle in the transmission is carried out. The loose gear acceleration index and the averaged impact power of free gears are calculated to assess the rattle generation potential and the level of rattle severity.
Journal Article

Development of a New Wet Dual Clutch Transmission Transmission and Driveline

2014-04-01
2014-01-1724
To meet the requirements of low fuel consumption, good driving performance, vehicle packaging constraint, and manufacturing feasibility, a new wet dual clutch transmission family has been developed by SAIC Motor. This paper will provide a design overview of the transmission architecture, main characteristics, key subsystems and control strategies. The paper will also provide an overview of the development process, and the fuel economy benefit to the vehicle. The transmission family adopts compact layout of gears and shafts, wet dual clutch, hydraulic system for actuation of clutch and forks, integrated parking system, integrated fork and synchronizer system, etc. To achieve compact package target, a coaxial dual clutch with integrated damper system, two countershafts system, and optimized layout of gear system are adopted. The technical features for low fuel consumption include waved clutch plates, targeted cooling of wet clutch, optimized gear ratios, optimized control strategies.
Journal Article

Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach

2014-10-13
2014-01-2882
The present paper describes a CAE analysis approach to evaluate the design of exhaust manifold of a turbo charged gasoline engine. It allows design engineers to identify structural weakness at the early stage or to find the root cause of exhaust manifold failures. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the exhaust manifold assembly during thermal shock cycles, which include rated speed full load, rated speed motored and idle speed conditions. A transient heat transfer simulation is performed to provide thermal boundary conditions for the nonlinear stress/strain analysis. The finite element model includes a part of cylinder head, exhaust manifold, gaskets, turbo charger housing, catalytic converter, brackets, bolts and nuts. The results show that plastic deformation is the main cause of manifold cracking and the manifold flange distortion causes the exhaust leakage.
Technical Paper

Integration of 3D Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures

2003-10-27
2003-01-3128
Crucial specifications of an engine are spread widely in various subsystems, such as cooling system, intake and exhaust system, combustion system, etc. Well-informed design decision and optimized design solution cannot be reached without considering interactions among subsystems. Even though significant progresses on CAE technologies have been made to address physical and chemical phenomena in each subsystem, there are few studies in literature to model an engine with a reasonable coverage of subsystems in an integrated fashion. The necessity of such approach is justified from two aspects. Firstly, modifications in one subsystem could result in changes in other subsystems. Secondly, frequently due to experimental constraints or availability of prototypes which is the case for new engine design, boundary conditions for a subsystem of interest can only be obtained from integrated numerical simulations with other subsystems.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
X