Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design and Performance Testing of an Advanced Integrated Power System with Flywheel Energy Storage

2003-06-23
2003-01-2302
The University of Texas Center for Electromechanics (UT-CEM) has completed the successful design, integration and testing of a hybrid electric power and propulsion system incorporating a flywheel energy storage device. During testing, the improved drive train was shown to double acceleration rates while simultaneously reducing prime power usage in excess of 25% when compared to the same vehicle without the flywheel energy storage system. While the system was designed for and demonstrated on a transit bus, the technology described herein is applicable to a wide variety of applications, including additional mobile and marine power and propulsion systems. This paper (1) describes the drive train design with an overview of the critical components and (2) presents results from system-level testing of the transit bus with the integrated drive train.
Technical Paper

Electromechanical Suspension Performance Testing

2001-03-05
2001-01-0492
The University of Texas Center for Electro-mechanics (UT-CEM) has been developing active suspension technology for high-speed off-road applications since 1993. The UT-CEM system uses controlled electromechanical actuators to control vehicle dynamics with passive springs to support vehicle static weight. The program is currently in a full vehicle demonstration phase on a military high mobility multipurpose wheeled vehicle (HMMWV). This paper presents detailed test results for this demonstration vehicle, compared to the conventional passive HMMWV, in a series of tests conducted by the U.S. Army at Yuma Proving Grounds. Extensive data in plotted form are discussed, including accelerometer readings from 6 vehicle mounted accelerometers, corner displacement transducers, and current and power plots for the actuators.
Technical Paper

Prototype Low Voltage Homopolar Traction Motor

2002-06-03
2002-01-1876
Lower battery voltage enhances electric vehicle safety. A homopolar traction motor operates at low voltage because of its low internal impedance, and delivers torque independent of speed. A 48 VDC multi-pass, iron core homopolar traction motor was designed, fabricated, and tested in the laboratory. A MOSFET pulse width modulated controller was also designed and tested. The motor weighed 227 kg and used solid copper-graphite brushes. Laboratory testing of the motor verified the current-torque characteristic, but high brush wear prevented full speed and power demonstration. System studies show that a hybrid Ward-Leonard drive using a similar motor could yield significant cost and weight savings and improved fault tolerance over a traditional EV architecture.
Technical Paper

Design and Testing of an Active Suspension System for a 2-1/2 Ton Military Truck

2005-04-11
2005-01-1715
The University of Texas Center for Electromechanics (UT-CEM) has been developing active suspension technology for off-road vehicles since 1993. The UT-CEM approach employs fully controlled electromechanical actuators to control vehicle dynamics and passive springs to efficiently support vehicle static weight. The project described in this paper is one of a succession of projects toward the development of effective active suspension systems, primarily for heavy off-road vehicles. Earlier projects targeted the development of suitable electromechanical actuators. Others contributed to effective control electronics and associated software. Another project integrated a complete system including actuators, power electronics and control system onto a HMMWV and was demonstrated at Yuma Proving Grounds in Arizona.
Technical Paper

Electromechanical Active Suspension Demonstration for Off-Road Vehicles

2000-03-06
2000-01-0102
The University of Texas Center for Electromechanics (UT-CEM) has been developing active suspension technology for off-road and on-road vehicles since 1993. The UT-CEM approach employs fully controlled electromechanical (EM) actuators to control vehicle dynamics and passive springs to efficiently support vehicle static weight. The program has completed three phases (full scale proof-of-principle demonstration on a quarter-car test rig; algorithm development on a four-corner test rig; and advanced EM linear actuator development) and is engaged in a full vehicle demonstration phase. Two full vehicle demonstrations are in progress: an off-road demonstration on a high mobility multiwheeled vehicle (HMMWV) and an on-road demonstration on a transit bus. HMMWV test results are indicating significant reductions in vehicle sprung mass accelerations with simultaneous increases in cross-country speed when compared to conventional passive suspension systems.
X