Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
Journal Article

Air-to-Fuel and Dual-Fuel Ratio Control of an Internal Combustion Engine

2009-11-02
2009-01-2749
Air-to-fuel (A/F) ratio is the mass ratio of the air-to-fuel mixture trapped inside a cylinder before combustion begins, and it affects engine emissions, fuel economy, and other performances. Using an A/F ratio and dual-fuel ratio control oriented engine model, a multi-input-multi-output (MIMO) sliding mode control scheme is used to simultaneously control the mass flow rate of both port fuel injection (PFI) and direct injection (DI) systems. The control target is to regulate the A/F ratio at a desired level (e.g., at stoichiometric) and fuel ratio (ratio of PFI fueling vs. total fueling) to any desired level between zero and one. A MIMO sliding mode controller was designed with guaranteed stability to drive the system A/F and fuel ratios to the desired target under various air flow disturbances.
Technical Paper

Inaudible Knock and Partial-Burn Detection Using In-Cylinder Ionization Signal

2003-10-27
2003-01-3149
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. Maximizing engine power and fuel economy is limited by engine knock for a given air-to-fuel charge. Therefore, the ability to detect engine knock and run the engine at its knock limit is a key for the best power and fuel economy. This paper shows inaudible knock detection ability using in-cylinder ionization signals over the entire engine speed and load map. This is especially important at high engine speed and high EGR rates. The knock detection ability is compared between three sensors: production knock (accelerometer) sensor, in-cylinder pressure and ionization sensors. The test data shows that the ionization signals can be used to detect inaudible engine knock while the conventional knock sensor cannot under some engine operational conditions.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Pressure Signal

2003-10-27
2003-01-3266
MBT timing for an internal combustion engine is also called minimum spark timing for best torque or the spark timing for maximum brake torque. Unless engine spark timing is limited by engine knock or emission requirements at a certain operational condition, there exists an MBT timing that yields the maximum work for a given air-to-fuel mixture. Traditionally, MBT timing for a particular engine is determined by conducting a spark sweep process that requires a substantial amount of time to obtain an MBT calibration. Recently, on-line MBT timing detection schemes have been proposed based upon cylinder pressure or ionization signals using peak cylinder pressure location, 50 percent fuel mass fraction burn location, pressure ratio, and so on. Because these criteria are solely based upon data correlation and observation, both of them may change at different engine operational conditions. Therefore, calibration is still required for each MBT detection scheme.
Technical Paper

In-cylinder Combustion Visualization of a Direct-injection Spark-ignition Engine with Different Operating Conditions and Fuels

2012-09-10
2012-01-1644
A direct-injection and spark-ignition single-cylinder engine with optical access to the cylinder was used for the combustion visualization study. Gasoline and ethanol-gasoline blended fuels were used in this investigation. Experiments were conducted to investigate the effects of fuel injection pressure, injection timing and the number of injections on the in-cylinder combustion process. Two types of direct fuel injectors were used; (i) high-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) low-pressure production-intent injector with fuel pressure of 3 MPa. Experiments were performed at 1500 rpm engine speed with partial load. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording. Visualization results show that the flame growth is faster with the increment of fuel injection pressure.
Technical Paper

Closed Loop Maximum Dilution Limit Control using In-Cylinder Ionization Signal

2005-10-24
2005-01-3751
This paper presents a combustion stability index derived from an in-cylinder ionization signal to control the engine maximum EGR limit. Different from the existing approaches that use the ionization signal values to gauge how much EGR was added during the combustion, the proposed method concentrates on using the ionization signal duration and its stochastic properties to evaluate the end result of EGR on combustion stability. When the duration index or indexes are higher than pre-determined values, the EGR limit is set. The dynamometer engine test results have shown promise for closed loop EGR control of spark ignition engines.
Technical Paper

IC Engine Retard Ignition Timing Limit Detection and Control using In-Cylinder Ionization Signal

2004-10-25
2004-01-2977
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. However, the usable range of ignition timing is often limited by knock in the advance direction and by combustion instability (partial burn and misfire) in the retard direction. This paper details a retard limit management system utilizing ionization signals in order to maintain the desired combustion quality and prevent the occurrence of misfire without using fixed limits. In-cylinder ionization signals are processed to derive a metric for combustion quality and closeness of combustion to partial burn/misfire limit, which is used to provide a limiting value for the baseline ignition timing in the retard direction. For normal operations, this assures that the combustion variability is kept within an acceptable range.
Technical Paper

Camless Variable Valve Actuator with Two Discrete Lifts

2015-04-14
2015-01-0324
Camless Variable Valve Actuation (VVA) technologies have been known for improving fuel economy, reducing emissions, and enhancing engine performance. VVA can be divided into electro-magnetic, electro-hydraulic, and electro-pneumatic actuation. This paper presents an electro-hydraulic VVA design (called GD-VVA-2) that offers continuously variable timing and two discrete lifts (low lift S1 and high lift S2). The lift control is achieved through a lift control sleeve, which is hydraulically switched between two mechanically defined positions to provide accurate lifts. The low lift S1 has a wide design range, anywhere between zero and the high lift S2, i.e., 0 < S1 < S2. If S1 ≥ 0.5*S2, engine valves may operate at the low lift during most of a typical drive cycle. Operation at the low lift reduces energy consumption significantly. The GD-VVA-2 design offers compact package size and reasonable energy consumption.
X