Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Open Source Computer Vision Solution for Head and Gaze Tracking in a Driving Simulator Environment

2015-04-14
2015-01-1386
Inadequate situation awareness and response are increasingly recognized as prevalent critical errors that lead to young driver crashes. To identify and assess key indicators of young driver performance (including situation awareness), we previously developed and validated a Simulated Driving Assessment (SDA) in which drivers are safely and reproducibly exposed to a set of common and potentially serious crash scenarios. Many of the standardized safety measures can be calculated in near real-time from simulator variables. Assessment of situation awareness, however, largely relies on time-consuming data reduction and video coding. Therefore, the objective of this research was to develop a near real-time automated method for analyzing general direction and location of driver's gaze in order to assess situation awareness.
Technical Paper

Evaluation of Restraint Type and Performance Tested with 3- and 6-Year-Old Hybrid III Dummies at a Range of Speeds

2004-03-08
2004-01-0319
Children under six years of age who are prematurely restrained in adult seat belts are at more than 3 times increased risk of injury as compared with children in child restraint systems (CRS). As a result, CRS (child safety seats and booster seats) are recommended as appropriate restraints for young children and use of different types of child restraints is increasing rapidly. The objective of this study was to begin to evaluate the performance of multiple restraints at a range of speeds, utilizing the Hybrid III 3- and 6-year-old child dummies. Injury measurements were compared for a 3-year old restrained in a forward facing convertible child restraint, a backless belt-positioning booster seat and in a lap shoulder seat belt; and, for a 6-year old restrained in a backless belt-positioning booster seat, a high back belt-positioning booster seat, and a lap shoulder seat belt. A matrix of tests (total of 18) at speeds of 24, 40, and 56 kph were used in the evaluation.
Technical Paper

Pediatric Facial Fractures: Implications for Regulation

2002-03-04
2002-01-0025
On-site, in-depth investigations were conducted on 14 crashes involving 15 children who sustained facial fractures. Of the 23 facial fractures documented, the most frequent were the nose (n=8), orbit (n=6), zygoma/maxilla (n=6), and mandible (n=3). The most frequent contact point of those seated in the rear was the rear of the front seat; of those seated in the front, the instrument panel. 11/15 had sub-optimal torso restraint resulting from placing the shoulder belt behind their back or sitting in a position only equipped with a lap belt. The data suggest that these injuries resulted from high-energy impact with interior vehicle components. Revision to FMVSS 201 to account for vehicle interior structures typically contacted by child occupants and enhancement of pediatric dummies to measure facial impact forces should be considered.
Technical Paper

Upper Extremity Fractures in Restrained Children Exposed to Passenger Airbags

2003-03-03
2003-01-0507
Restrained children between the ages of 3 to 15 years in crashes were identified in an on-going crash surveillance system (1998-2002) which links insurance claims data to telephone survey and crash investigation data. The risk of upper extremity injury associated with airbag deployment was estimated and a series of cases was examined using in-depth crash investigation to identify the mechanisms of these injuries. This study found that 3.5% of children who were exposed to a passenger airbag (PAB) received an upper extremity fracture, making them 2.5 times as likely to sustain an upper extremity fracture than children in similar crashes who were not exposed to a PAB. Female children were 2.2 times as likely to receive an isolated upper extremity fracture when exposed to a PAB than male children. The incidence rate, gender difference, and injury mechanism in children all appear to be similar to those of adults.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Technical Paper

Advanced Safety Technology for Children and Young Adults: Trends and Future Challenges

2006-10-16
2006-21-0007
Data presented in this paper demonstrated that the landscape for child occupant protection - the children and their restraints, vehicles, and crashes - is changing rapidly. Children are not small adults but are rather rapidly growing, developing, and changing and so too are their restraint needs. The past several years witnessed a growing awareness of these biomechanical challenges with the emergence of increased use of size-appropriate restraints for children under age 9 years and differences in patterns of injury by age. Vehicles involved in crashes with children reflect the trend overall: less passenger vans and cars and more light trucks, the majority of which are equipped with second generation air bags. The majority of crashes occurred on roads with posted speed limits below 45 miles per hour. The age group of particular concern is the newly driving teenage years (16-19) in which the crash and fatality rates are the highest among all age groups.
X