Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Blunt Impact

2014-04-01
2014-01-0486
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Technical Paper

Initial Assessment of the Next-Generation USA Frontal NCAP: Fidelity of Various Risk Curves for Estimating Field Injury Rates of Belted Drivers

2009-04-20
2009-01-0386
Various frontal impact risk curves were assessed for the next-generation USA New Car Assessment Program (NCAP). Specifically, the “NCAP risk curves” — those chosen by the government for the 2011 model year NCAP — as well as other published risk curves were used to estimate theoretically the injury rates of belted drivers in real-world frontal crashes. Two perspectives were considered: (1) a “point” estimate of NCAP-type events from NCAP fleet tests, and (2) an “aggregate” estimate of 0 ≤ ΔV ≤ 56 km/h crashes from a modeled theoretical vehicle whose NCAP performance approximated the average of the studied fleet. Four body regions were considered: head, neck, chest, and knee-thigh-hip complex (KTH). The curve-based injury rates for each body region were compared with those of real-world frontal crashes involving properly-belted adult drivers in airbag-equipped light passenger vehicles. The assessment yielded mixed results.
X