Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Exhaust Gas Turbocharger Speed Measurement Via Acoustic Emission Analysis

2008-04-14
2008-01-1007
The paper presents a non-intrusive, indirect and low-cost methodology for a real time on-board measurement of an automotive turbocharger rotational speed. In the first part of the paper the feasibility to gather information on the turbocharger speed trend is demonstrated by comparing the time-frequency analysis of the acoustic signal with the direct measurement obtained by an optical sensor facing the compressor blades, mounted in the compressor housing of a spark ignited turbocharged engine. In the second part of the paper, a real time algorithm, to be implemented in the engine control unit, is proposed. The algorithm is able to tune on the turbocharger revolution frequency and to follow it in order to extract the desired speed information. The frequency range containing the turbocharger acoustic frequency can be set utilizing a raw estimation of the compressor speed, derived by its characteristic map.
Technical Paper

Thermodynamic Analysis of Variable Valve Timing Infuence on SI Engine Efficiency

2001-03-05
2001-01-0667
The large number of mechanical, electro-magnetic and oleo-dynamic systems for variable valve actuation developed by automotive suppliers demonstrates the great interest that is being devoted to their potential application on internal combustion engines. In the paper, a possible strategy to realize an original engine load control by means of both intake and exhaust variable valve timing (VVT) is briefly presented and the thermodynamic analysis of the performance obtainable with this solution is carried out. The peculiarity of this strategy is that it is possible to directly recirculate the desired mass of exhaust gas with less limitation with respect to the external duct architecture.
Technical Paper

An Approach for Misfire Diagnosis in Critical Zones of the Operating Range of a High Performance Engine

2003-03-03
2003-01-1058
The optimization of a high performance engine in order to achieve maximum power at full load and high speed can cause an unstable behavior when the engine is running at different conditions, thus making a robust combustion diagnosis for on board diagnostic EOBD/OBD II purposes (misfiring detection) particularly challenging. In fact, when a misfire occurs, its detection can be critical because of the high background noise due to high indicated mean effective pressure (IMEP) cyclic variability. A partial reduction of the high IMEP variability had been achieved by optimizing control parameters of a new prototype high performance V8/4.2 l engine. Spark advance and VVT phasing maps had in fact been re-designed based on in-cylinder pressure variability (cycle by cycle and cylinder by cylinder) analysis.
Technical Paper

Knock Indexes Normalization Methodologies

2006-09-14
2006-01-2998
Gasoline engines can be affected, under certain operating conditions, by knocking combustions, which can result in serious engine damage. Specific power and efficiency are influenced by factors such as compression ratio and spark advance regulation, that modify the combustion development over the crank angle: the trade-off between performance and the risk of irreversible damages is still a key factor in the design of both high-performance (racing) and low-consumption engines. New generation detection systems, especially based on ionization current technology, allow aggressive advance mapping and control, and future equipment, such as low-cost in-cylinder pressure transducers, will allow following that trend. Also HCCI (Homogeneous Charge Compression Ignition) engines need a sophisticated combustion monitoring methodology, since increasing BMEP levels in HCCI mode force the combustion to approach the knocking operation.
X