Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of A Control-Oriented Model of Engine, Transmission and Vehicle Systems for Motor Scooter HIL Testing

2009-06-15
2009-01-1779
This paper describes the development of a mathematical model which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics of a motor vehicle equipped with a Continuously Variable Transmission (CVT) system. The aim of this work is to realize a simulation tool that is able to evaluate the performance and the operating conditions of the ICE, once it is installed on a given vehicle. Since the simulation has to be run in real-time for Hardware In the Loop (HIL) applications, a zero-dimensional (filling and emptying) model is used for modeling the cylinder thermodynamics and the intake and exhaust manifolds. The combustion is modeled by means of single zone model, with the fuel burning rate described by Wiebe functions. The gas proprieties depend on temperature and chemical composition of the gas, which are evaluated at each crank-angle.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
X