Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Knock Indexes Thresholds Setting Methodology

2007-04-16
2007-01-1508
Gasoline engines can be affected, under certain operating conditions, by knocking combustions: this is still a factor limiting engines performance, and an accurate control is required for those engines working near the knock limit, in order to avoid permanent damage. HCCI engines also need a sophisticated combustion monitoring methodology, especially for high BMEP operating conditions. Many methodologies can be found in the literature to recognize potentially dangerous combustions, based on the analysis of the in-cylinder pressure signal. The signal is usually filtered and processed, in order to obtain an index that is then be compared to the knock threshold level. Thresholds setting is a challenging task, since usually indexes are not intrinsically related to the damages caused by abnormal combustions events. Furthermore, their values strongly depend on the engine operating conditions (speed and load), and thresholds must therefore vary with respect to speed and load.
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Development Investigation for MFB50 On-board Estimation

2010-10-25
2010-01-2211
Proper design of the combustion phase has always been crucial for Diesel engine control systems. Modern engine control strategies' growing complexity, mainly due to the increasing request to reduce pollutant emissions, requires on-board estimation of a growing number of quantities. In order to feedback a control strategy for optimal combustion positioning, one of the most important parameters to estimate on-board is the angular position where 50% of fuel mass burned over an engine cycle is reached (MFB50), because it provides important information about combustion effectiveness (a key factor, for example, in HCCI combustion control). In modern Diesel engines, injection patterns are designed with many degrees of freedom, such as the position and the duration of each injection, rail pressure or EGR rate. In this work a model of the combustion process has been developed in order to evaluate the energy release within the cylinder as a function of the injection parameters.
Technical Paper

Knock Indexes Normalization Methodologies

2006-09-14
2006-01-2998
Gasoline engines can be affected, under certain operating conditions, by knocking combustions, which can result in serious engine damage. Specific power and efficiency are influenced by factors such as compression ratio and spark advance regulation, that modify the combustion development over the crank angle: the trade-off between performance and the risk of irreversible damages is still a key factor in the design of both high-performance (racing) and low-consumption engines. New generation detection systems, especially based on ionization current technology, allow aggressive advance mapping and control, and future equipment, such as low-cost in-cylinder pressure transducers, will allow following that trend. Also HCCI (Homogeneous Charge Compression Ignition) engines need a sophisticated combustion monitoring methodology, since increasing BMEP levels in HCCI mode force the combustion to approach the knocking operation.
X