Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Relating Knocking Combustions Effects to Measurable Data

2015-09-06
2015-24-2429
Knocking combustions heavily influence the efficiency of Spark Ignition engines, limiting the compression ratio and sometimes preventing the use of Maximum Brake Torque (MBT) Spark Advance (SA). A detailed analysis of knocking events can help in improving the engine performance and diagnostic strategies. An effective way is to use advanced 3D Computational Fluid Dynamics (CFD) simulation for the analysis and prediction of the combustion process. The standard 3D CFD approach based on RANS (Reynolds Averaged Navier Stokes) equations allows the analysis of the average engine cycle. However, the knocking phenomenon is heavily affected by the Cycle to Cycle Variation (CCV): the effects of CCV on knocking combustions are then taken into account, maintaining a RANS CFD approach, while representing a complex running condition, where knock intensity changes from cycle to cycle.
Journal Article

Assessment of the Influence of GDI Injection System Parameters on Soot Emission and Combustion Stability through a Numerical and Experimental Approach

2015-09-06
2015-24-2422
The next steps of the current European and US legislation, EURO 6c and LEV III, and the incoming new test cycles will impose more severe restrictions on pollutant emissions for Gasoline Direct Injection (GDI) engines. In particular, soot emission limits will represent a challenge for the development of this kind of engine concept, if injection and after-treatment systems costs are to be minimized at the same time. The paper illustrates the results obtained by means of a numerical and experimental approach, in terms of soot emissions and combustion stability assessment and control, especially during catalyst-heating conditions, where the main soot quantity in the test cycle is produced. A number of injector configurations has been designed by means of a CAD geometrical analysis, considering the main effects of the spray target on wall impingement.
Technical Paper

Development of A Control-Oriented Model of Engine, Transmission and Vehicle Systems for Motor Scooter HIL Testing

2009-06-15
2009-01-1779
This paper describes the development of a mathematical model which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics of a motor vehicle equipped with a Continuously Variable Transmission (CVT) system. The aim of this work is to realize a simulation tool that is able to evaluate the performance and the operating conditions of the ICE, once it is installed on a given vehicle. Since the simulation has to be run in real-time for Hardware In the Loop (HIL) applications, a zero-dimensional (filling and emptying) model is used for modeling the cylinder thermodynamics and the intake and exhaust manifolds. The combustion is modeled by means of single zone model, with the fuel burning rate described by Wiebe functions. The gas proprieties depend on temperature and chemical composition of the gas, which are evaluated at each crank-angle.
Technical Paper

Upgrade of a Turbocharger Speed Measurement Algorithm Based on Acoustic Emission

2009-04-20
2009-01-1022
The present paper is about the rotational speed measurement of an automotive turbocharger, obtained starting from the analysis of acoustic emission produced by an engine, which have been acquired by a microphone placed under the vehicle hood. In the first part of the paper several upgrades to increase the overall performance of the speed extraction algorithm are presented and discussed, starting from the basic algorithm that has already demonstrated the methodology capability in a previous paper. In particular it has been considered a different signal sampling rate in order to extend the applicability of the methodology to a wider range of engines. Also a new processing procedure has been defined to increase the capability of the algorithm to tune on the frequency signal.
Technical Paper

Vehicle Dynamics Modeling for Real-Time Simulation

2013-09-08
2013-24-0144
This paper presents a 14 degrees of freedom vehicle model. Despite numerous software are nowadays commercially available, the model presented in this paper has been built starting from a blank sheet because the goal of the authors was to realize a model suitable for real-time simulation, compatible with the computational power of typical electronic control units, for on-board applications. In order to achieve this objective a complete vehicle dynamics simulation model has been developed in Matlab/Simulink environment: having a complete knowledge of the model's structure, it is possible to adapt its complexity to the computational power of the hardware used to run the simulation, a crucial feature to achieve real-time execution in actual ECUs.
X