Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Neck Tension Force in IIHS Rear Impact Test

2007-04-16
2007-01-0368
This paper examines the neck tension force (Fz) of the BioRid II dummy in the IIHS (Insurance Institute of Highway Safety) rear impact mode. The kinematics of the event is carefully reviewed, followed by a detailed theoretical analysis, paying particular attention to the upper neck tension force. The study reveals that the neck tension should be approximately 450N due to the head inertia force alone. However, some of the tests conducted by IIHS had neck tension forces as high as 1400N. The theory of head hooking and torso downward pulling is postulated in the paper, and various publicly available IIHS rear impact tests are examined against the theory. It is found in the analysis that in many of those tests with high neck tension forces, the locus of the head restraint reaction force travels on the dummy's skull cap, and eventually moves down underneath the skull cap, which causes “hooking” of the head on the stacked-up head restraint foam.
Technical Paper

Engineering the 1999 Mercury Cougar Hybrid Instrument Panel

1999-03-01
1999-01-0692
In a joint effort between Ford Motor Company, Visteon Automotive Systems, Textron Automotive Company, and Dow Automotive the 1999 Mercury Cougar instrument panel (IP) was designed and engineered to reduce the weight and overall cost of the IP system. The original IP architecture changed from a traditional design that relied heavily upon the steel structure to absorb and dissipate unbelted occupant energy during frontal collisions to a hybrid design that utilizes both plastic and steel to manage energy. This design approach further reduced IP system weight by 1.88 Kg and yielded significant system cost savings. The hybrid instrument panel architecture in the Cougar utilizes a steel cross car beam coupled to steel energy absorbing brackets and a ductile thermoplastic substrate. The glove box assembly and the driver knee bolster are double shell injection molded structures that incorporate molded-in ribs for added stiffness.
X