Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Safety Performance and Benefits of Heavy Truck Stability Control: Providing Insight into Compliance Evaluation

2012-09-24
2012-01-1906
This paper contains an analysis of the potential safety benefits of electronic stability control (ESC) for single unit trucks and tractor semitrailers within the U.S. operating environment. It is based on research projects [1,2] which combined hardware-in-the-loop simulation and vehicle testing with the analysis of independent crash datasets using engineering and statistical techniques to estimate the probable safety benefits of stability control technologies for 5-axle tractor-semitrailer vehicles and single unit trucks. The characteristics of ESC-relevant crashes involving these two vehicle classes were found to be very different as were the control strategies needed for crash avoidance. Rollover was the dominant ESC relevant crash type for tractor semitrailers while loss of control was the dominant ESC relevant crash for straight trucks.
Technical Paper

Automated Control and Brake Strategies for Future Crash Avoidance Systems - Potential Benefits

2013-09-24
2013-01-2391
This paper explores the potential safety performance of “Future Generation” automated speed control crash avoidance systems for Commercial Vehicles. The technologies discussed in this paper include Adaptive Cruise Control (ACC), second and third generation Forward Collision Avoidance and Mitigation Systems (F-CAM) comprised of Forward Collision Warning (FCW) with Collision Mitigation Braking (CMB) technology as applied to heavy trucks, including single unit and tractor semitrailers. The research [1[ discussed in this paper is from a study conducted by UMTRI which estimated the safety benefits of current and future F-CAM systems and the comparative efficacy of adaptive cruise control. The future generation systems which are the focus of this paper were evaluated at two separate levels of product refinement, “second generation” and “third generation” systems.
Technical Paper

Effectiveness of a Current Commercial Vehicle Forward Collision Avoidance and Mitigation Systems

2013-09-24
2013-01-2394
This paper focuses on the safety performance of Commercial Vehicle Forward Collision Avoidance and Mitigation Systems (F-CAM) that include Forward Collision Warning (FCW) with Collision Mitigation Braking (CMB) technology as applied to heavy trucks, including single unit and tractor semitrailers. The study estimated the safety benefits of a commercially available F-CAM system considered to be representative of products currently in service. The functional characteristics were evaluated and its performance generically modeled to estimate safety benefits. This was accomplished through the following steps: (1) first characterize the actual performance of these systems in various pre-crash scenarios under controlled test track conditions, and then reverse engineering the algorithms that control warnings and automatic braking actions; (2) developing a comprehensive set of simulated crash events representative of actual truck striking rear-end crashes.
X