Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analysis of a Diesel Spray Using a Mechanical Slicing Device

2001-05-07
2001-01-2009
This paper gives a summary of image velocimetry measurements performed in a sliced diesel spray. The slicing of the spray was necessary to achieve sufficient image quality in the more dense regions of the spray. The images were double exposed to allow auto-correlation based velocimetry. The illumination was achieved with a xenon flashlight behind the spray and consequently the droplets were visible as dark shadows. Images were acquired from different points downstream from the nozzle, and a number of different radii were employed at every position. In the images the smaller droplets seem to be spherical, while the larger ones are distorted due to high weber numbers. Computer simulations indicate that large droplets may reach high weber numbers when passing through the slit, and that some of these large droplets break up.
Technical Paper

Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine

2017-09-04
2017-24-0050
Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Fuel Sprays for Premixed Compression Ignited Combustion - Characteristics of Impinging Sprays

2004-03-08
2004-01-1776
For homogeneous charge compression ignition (HCCI) engines with direct-injected fuel (also called PCI, Pre-mixed Compression Ignition), it is important to achieve a lean and homogeneous mixture before ignition. For this purpose, impinging diesel sprays have proven to be useful. In this study, an evaluation of the overall air/fuel ratio of such sprays was made in a test rig. The test rig consists of a pressurized vessel with optical access and a Common Rail (CR) fuel injection system. The investigation was made for impinging spray nozzles with different impingement angles and orifice diameters. Three gas back pressures and three injection pressures were evaluated. The evaluation was based on images of the fuel sprays taken in the test rig. The fuel spray images were automatically processed using in-house developed software. The results of the investigation points out some important factors to obtain a lean spray, (a high air/fuel ratio).
X