Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fluid Dynamic Study of Unthrottled Part Load SI Engine Operations with Asymmetric Valve Lifts

2009-09-13
2009-24-0017
This paper describes how a fully three-dimensional CFD model was used to investigate the turbulence generation mechanisms of an unthrottled 4 valve SI engine operating with different intake valve lift strategies (symmetric and asymmetric). In the context of Early Intake Valve Closure (EIVC) strategies, the aim of the work is to highlight the potentialities to increase turbulence levels also at light load using asynchronous intake valve lift, thus promoting both tumble and swirl motions. Six simulations are presented, four at low engine speed (2500 rpm) and two at high speed (6000 rpm, that serve as reference), concerning an SI engine at full and light load, with symmetric and asymmetric intake lifts. One of these simulations was executed in standard throttling conditions. The CFD transient simulations involved three strokes of the engine: exhaust, intake and compression up to combustion TDC. 1D data are used for boundary and initial conditions.
Technical Paper

Spoilers Optimization to Reduce the Induced Stresses on a Racing Helmet

2016-04-05
2016-01-1612
Aerodynamics is one of the most important factors in the development of racing cars. At the speeds of formula cars reach the formula cars, the driver's neck can be subjected to stresses resulting from the aerodynamic forces acting on the helmet; developing an aerodynamic project that takes into account the comfort of the driver without affecting performance is certainly considered a challenging activity. The aim of the present work is to develop a low-pitching-momenthelmet for formula racing cars optimizing the shape and location, applying some aerodynamic appendices. This goal is pursued by adopting an approach based on both experimental and numerical activities. First, the aerodynamic configuration of an existing helmet was examined; through a testing campaign in the wind tunnel facilities of Perugia University, pressures acting on the helmet were scanned at various speeds and data about aerodynamic drag were collected.
X