Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

OBD Engine Fault Detection Using a Neural Approach

2001-03-05
2001-01-0559
The present work is the continuation of the research activity developed by the same authors in last years about the use of recent technologies (Artificial Neural Networks) for the set up of “software redundancy” modules to be implemented On Board for the use in Diagnostic Systems. In the present work, a system based on Artificial Neural Networks models for automotive engines Fault Diagnosis and Isolation purposes is set-up and analysed. Four sensors/actuators (throttle valve, rotational speed, torque and intake manifold pressure) are considered, and the respective acquired data are used to train and test four ANN modules correlating the different quantities. An FDI scheme is presented which generates fault codes sequences by suitably treating the primary residuals, obtained by comparing experimental data with the calculated ones by the ANN modules. The robust fault isolation capabilities of the proposed FDI system are presented and discussed.
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
X