Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Technical Paper

Performance and Emissions of a Common Rail DI Diesel Engine Using Fossil and Different Bio-Derived Fuels

2001-05-07
2001-01-2017
The recent introduction of electronic controlled, high pressure injection systems has deeply changed the scenario for light duty, automotive diesel engines. This change is mainly due to the enhanced flexibility in obtaining the desired injection law (time history and injected fuel quantity), while high injection pressures also favour a suitable mixture formation. This results in higher engine performance (efficiency and power) and in better pollutant emissions control. At the same time, in order to reduce the greenhouse gases net production, research is analyzing alternative resources, such as bio-derived fuels. In particular, methyl esters derived by different vegetable oils are characterized by high cetane numbers and very small sulfur content. The present work reports the results of a comparative analysis performed on a modern DI, common-rail, turbocharged engine by using three different bio-derived fuels (rape seed, soybean, waste cooked oil) and conventional fossil diesel fuel.
Technical Paper

Pressure and Flow Field Effects on Arc Channel Characteristics for a J-type Spark Plug

2022-03-29
2022-01-0436
Lean operation of spark ignition engines is a promising strategy for increasing thermal efficiency and minimize emissions. Variability on the other hand is one of the main shortcomings in these conditions. In this context, the present study looks at the interaction between the spark produced by a J-type plug and the surrounding fluid flow. A combined experimental and numerical approach was implemented so as to provide insight into the phenomena related to the ignition process. A sweep of cross-flow velocity of air was performed on a dedicated test rig that allowed accurate control of the volumetric flow and pressure. This last parameter was varied from ambient to 10 bar, so as to investigate conditions closer to real-world engine applications. Optical diagnostics were applied for better characterization of the arc in different operating conditions. The spatial and temporal evolution of the arc was visualized with high-speed camera to estimate the length, width and stretching.
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
X