Refine Your Search

Topic

Search Results

Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector

2017-09-04
2017-24-0012
Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.
Journal Article

Instantaneous Flow Rate Testing with Simultaneous Spray Visualization of an SCR Urea Injector at Elevated Fluid Temperatures

2017-09-04
2017-24-0109
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
Journal Article

Analysis of Diesel Spray Momentum Flux Spatial Distribution

2011-04-12
2011-01-0682
In the present paper the results of an experimental and numerical analysis of a common-rail, high pressure Diesel spray evolving in high counter pressure conditions is reported. The experimental study was carried out mainly in terms of spray momentum flux indirect measurement by the spray impact method; the measurement of the impact force time-histories, along with the CFD analysis of the same phenomenon, gave interesting insight in the internal spray structure. As well known, the overall spray structure momentum flux along with the injection rate measurements can be used to derive significant details about the in-nozzle flow and cavitation phenomena intensity. The same global spray momentum and momentum flux measurement can be useful in determining the jet-to-jet un-uniformities also in transient, engine-typical injection conditions which can assist in the matching process between the injection system and the combustion chamber design.
Journal Article

Experimental Assessment of a Novel Instrument for the Injection Rate Measurement of Port Fuel Injectors in Realistic Operating Conditions

2017-03-28
2017-01-0830
In the present paper an innovative approach for the shot-to-shot hydraulic characterization of low pressure injection systems is experimentally assessed. The proposed methodology is an inverse application of the Zeuch’s method, which in this case is applied to a closed volume upstream the injector instead of downstream of it as in conventional injection analyzers. By this approach, the well-known constraint of having a finite volume pressurized with the injected liquid downstream the injector is circumvented. As a consequence, with the proposed instrument low pressure injectors - such as PFI, fed with gasoline or water, SCR injectors - can operate with the prescribed upstream-downstream pressure differential. Further, the injector can spray directly in atmosphere or in any ambient at arbitrary pressure and temperature conditions, allowing the simultaneous application of other diagnostics such as imaging, momentum flux measurement or sizing instruments.
Technical Paper

CFD Analysis of Injection Timing Influence on Mixture Preparation in a PFI Motorcycle Engine

2006-11-13
2006-32-0022
The efficiency of engine operations, i.e. cold start, transient response and operating at idle, depends on the capability of the injection fuel system to promote a homogeneous mixture formation through an efficient interaction with engine fluid dynamics and geometry. The paper presents the development and the application of a methodology for running a CFD PFI engine simulation. A preliminary assessment of the wall-film and droplet-wall interaction sub models has been carried out in order to validate the methodology. Then a three-step numerical procedure has been adopted. The first two steps are aimed to properly initialize the secondary breakup model depending on the type of injector installed on board in order to achieve accurate predictions of spray characteristics.
Technical Paper

Experimental and Numerical Study of an Electro-Hydraulic Camless VVA System

2008-04-14
2008-01-1355
This paper presents the current research activity about an electro-hydraulic camless valve actuation system for internal combustion engines. From a general point of view, this system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. In the HVC system, the valve actuation timing and duration are controlled by varying the driving signal of the pilot stage, which is governed by a solenoid, fast-acting, three-way valve; the valve lift is adjusted by varying the oil pressure of the power stage. This system uses hydraulic forces to open the engine valve while a mechanical spring is used for its closure. The HVC key element is a spool valve, which operates as a three way / three position valve. This element is designed in order to ensure the synchronization of its own motion with that of the poppet valve mass-spring system.
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

Evaluation of Diesel Spray Momentum Flux in Transient Flow Conditions

2010-10-25
2010-01-2244
In the present paper, a detailed numerical and experimental analysis of a spray momentum flux measurement device capability is presented. Particular attention is devoted to transient, engine-like injection events in terms of spray momentum flux measurement. The measurement of spray momentum flux in steady flow conditions, coupled with knowledge of the injection rate, is steadily used to estimate the flow mean velocity at the nozzle exit and the extent of flow cavitation inside the nozzle in terms of a velocity reduction coefficient and a flow section reduction coefficient. In the present study, the problem of analyzing spray evolution in short injection events by means of jet momentum flux measurement was approached. The present research was based on CFD-3D analysis of the spray-target interaction in a momentum measurement device.
Technical Paper

Diesel Common Rail Injection System Behavior with Different Fuels

2004-03-08
2004-01-0029
In the present paper, an analysis of non-evaporating, transient Diesel sprays generated by an automotive common-rail, electronic controlled injection system is described. A standard Diesel fuel and a pure Biodiesel were used for the tests, with sprays evolving in a pressurized test chamber and generated by both cylindrical and conical hole nozzles. The spray analysis is performed mainly by means of a laser sheet technique in order to obtain global spray data suitable for tuning direct injection systems to such fuels and for numerical codes validation. A dispersion analysis among different jets was also performed, along with the injection rate measurement. A PDA system was also used to characterize the behavior of the two fuels with the prototype injector nozzles at ambient conditions.
Technical Paper

Direct Injection of Variable Gasoline/Methanol Mixtures: Injection and Spray Characteristics

2001-03-05
2001-01-0966
The injection rate modulation and the spray characteristics are determining factors for the quality of mixture formation when applying GDI. Their variation with load and speed is a basic criterion for the adaptability of a type of injection system to an engine with known requirements. The increased interest for the utilization of regenerative fuels - such as methanol obtained from biomass - as well as the success of previous utilization scenarios of variable gasoline/methanol mixture using manifold injection formed the base of the present analysis: the paper describes the results concerning injection performances and spray characteristics when using gasoline/methanol mixtures with different ratios in a direct injection system with high pressure modulation. The results are compared for different parameters of the injection systems as follows: injection volume, injector opening pressure, needle lift, pintle/seat geometry.
Technical Paper

Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model

2001-03-05
2001-01-1070
A hybrid model for the atomization of Diesel sprays was developed [1]. The model was added to the KIVA code to better simulate spray evolution. Different implementation for low-medium and high injection pressure sprays are performed. It has already been validated for the low-pressure case [1,2] and in this work it was tested for high injection pressure systems, in a vessel at ambient conditions. It distinguishes between jet primary breakup and droplet secondary breakup. For the latter distinct models are used, as the droplet Weber number changes in the various regimes, in order to take into account the effects of the different relevant forces. For high pressure Diesel spray the effects of jet turbulence, cavitation and nozzle flow on liquid core primary breakup must be considered. Due to the high droplet velocity the catastrophic secondary breakup regime may occur.
Technical Paper

Performance and Emissions of a Common Rail DI Diesel Engine Using Fossil and Different Bio-Derived Fuels

2001-05-07
2001-01-2017
The recent introduction of electronic controlled, high pressure injection systems has deeply changed the scenario for light duty, automotive diesel engines. This change is mainly due to the enhanced flexibility in obtaining the desired injection law (time history and injected fuel quantity), while high injection pressures also favour a suitable mixture formation. This results in higher engine performance (efficiency and power) and in better pollutant emissions control. At the same time, in order to reduce the greenhouse gases net production, research is analyzing alternative resources, such as bio-derived fuels. In particular, methyl esters derived by different vegetable oils are characterized by high cetane numbers and very small sulfur content. The present work reports the results of a comparative analysis performed on a modern DI, common-rail, turbocharged engine by using three different bio-derived fuels (rape seed, soybean, waste cooked oil) and conventional fossil diesel fuel.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
Technical Paper

Common Rail HSDI Diesel Engine Combustion and Emissions with Fossil / Bio-Derived Fuel Blends

2002-03-04
2002-01-0865
In order to evaluate the potentialities of bioderived diesel fuels, the effect of fueling a 1.9 l displacement HSDI automotive Diesel engine with biodiesel and fossil/biodiesel blend on its emission and combustion characteristics has been investigated. The fuels tested were a typical European diesel, a 50% biodiesel blend in the reference diesel, and a 100% biodiesel, obtained by mixing rape seed methyl ester (RME) and recycled cooking oil (CME). Steady state tests were performed at two different engine speeds (2500 and 4000 rpm), and for a wide range of loads, in order to evaluate the behavior of the fuels under a large number of operating conditions. Engine performance and exhaust emissions were analyzed, along with the combustion process in terms of heat release analysis. Experimental evidences showed appreciably lower CO and HC specific emissions and a substantial increase in NOx levels. A significant reduction of smoke emissions was also obtained.
Technical Paper

Injection Strategies Tuning for the Use of Bio-Derived Fuels in a Common Rail HSDI Diesel Engine

2003-03-03
2003-01-0768
The potentialities in terms of engine performance and emissions reduction of pure biodiesel were examined on a Common Rail HSDI Diesel engine, trying to define a proper tuning of the injection strategies to bio-fuel characteristics. An experimental investigation was therefore carried out on a typical European passenger car Diesel engine, fuelled with a soybean oil derived biodiesel. A standard European diesel fuel was also used as a reference. In particular, the effects of an equal relative air/fuel ratio at full load condition were analysed; further, a sensitivity study on the outcome of the pilot injection timing and duration at part load on engine emissions was performed. Potentialities in recovering the performance gap between fossil fuel and biodiesel and in reducing NOx specific emissions, affecting only to a limited extent the biodiesel emission benefit in terms of CO, HC and FSN, were highlighted.
Technical Paper

Injection Rate Measurement of GDI Systems Operating against Sub-Atmospheric and Pressurized Downstream Conditions

2017-09-04
2017-24-0110
In order to optimize gasoline direct injection combustion systems, a very accurate control of the fuel flow rate from the injector must be attained, along with appropriate spray characteristics in terms of drop sizing and jets global penetration/diffusion in the combustion chamber. Injection rate measurement is therefore one of the crucial tasks to be accomplished in order both to develop direct injection systems and to properly match them with a given combustion system. Noticeably, the hydraulic characteristics of GDI injectors should be determined according to a non-intrusive measuring approach. Unfortunately, the operation of all conventional injection analyzers requires the injection in a volume filled with liquid and the application of a significant counter-pressure downstream of the injector. This feature prevents any operation with low pressure injection systems such as PFIs.
Technical Paper

A Methodology for the Estimation of Hole-to-Hole Injected Mass Based on Spray Momentum Flux Measurement

2017-03-28
2017-01-0823
In the present paper, a new methodology for the estimation of the mass delivered by a single hole of a GDI injector is presented and discussed. The GDI injector used for the activity featured a five-hole nozzle characterized by three holes with the same diameter and two holes with a larger diameter. The different holes size guarantees a significant difference in terms of mass flow. This new methodology is based on global momentum flux measurement of each single plume and on its combination with the global mass measurement made with the gravimetric principle. The momentum flux is measured by means of a dedicated test bench that detects the impact force of the single spray plume at different distances. The sensing device is moved in different positions and, in each point, the force trace averaged over several injection events is acquired. The global mass delivered by the injector is measured by collecting and weighing the fuel flown during a defined number of consecutive injections.
Technical Paper

Experimental and Numerical Analysis of Spray Evolution, Hydraulics and Atomization for a 60 MPa Injection Pressure GDI System

2018-04-03
2018-01-0271
In recent years, the GDI (Gasoline Direct Injection) technology has significantly spread over the automotive market under the continuous push toward the adoption of combustion systems featuring high thermodynamic conversion efficiency and moderate pollutant emissions. Following this path, the injection pressure level has been progressively increased from the initial 5-15 MPa level nowadays approaching 35 MPa. The main reason behind the progressive injection pressure increase in GDI engines is the improved spray atomization, ensuring a better combustion process control and lower soot emissions. On the other hand, increasing injection pressure implies more power absorbed by the pumping system and hence a penalty in terms of overall efficiency. Therefore, the right trade-off has to be found between soot formation tendency reduction thanks to improved atomization and the energetic cost of a high pressure fuel injection system.
X