Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Analysis of Diesel Spray Momentum Flux Spatial Distribution

2011-04-12
2011-01-0682
In the present paper the results of an experimental and numerical analysis of a common-rail, high pressure Diesel spray evolving in high counter pressure conditions is reported. The experimental study was carried out mainly in terms of spray momentum flux indirect measurement by the spray impact method; the measurement of the impact force time-histories, along with the CFD analysis of the same phenomenon, gave interesting insight in the internal spray structure. As well known, the overall spray structure momentum flux along with the injection rate measurements can be used to derive significant details about the in-nozzle flow and cavitation phenomena intensity. The same global spray momentum and momentum flux measurement can be useful in determining the jet-to-jet un-uniformities also in transient, engine-typical injection conditions which can assist in the matching process between the injection system and the combustion chamber design.
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

Direct Injection of Variable Gasoline/Methanol Mixtures: Injection and Spray Characteristics

2001-03-05
2001-01-0966
The injection rate modulation and the spray characteristics are determining factors for the quality of mixture formation when applying GDI. Their variation with load and speed is a basic criterion for the adaptability of a type of injection system to an engine with known requirements. The increased interest for the utilization of regenerative fuels - such as methanol obtained from biomass - as well as the success of previous utilization scenarios of variable gasoline/methanol mixture using manifold injection formed the base of the present analysis: the paper describes the results concerning injection performances and spray characteristics when using gasoline/methanol mixtures with different ratios in a direct injection system with high pressure modulation. The results are compared for different parameters of the injection systems as follows: injection volume, injector opening pressure, needle lift, pintle/seat geometry.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
Technical Paper

Injection Rate Measurement of GDI Systems Operating against Sub-Atmospheric and Pressurized Downstream Conditions

2017-09-04
2017-24-0110
In order to optimize gasoline direct injection combustion systems, a very accurate control of the fuel flow rate from the injector must be attained, along with appropriate spray characteristics in terms of drop sizing and jets global penetration/diffusion in the combustion chamber. Injection rate measurement is therefore one of the crucial tasks to be accomplished in order both to develop direct injection systems and to properly match them with a given combustion system. Noticeably, the hydraulic characteristics of GDI injectors should be determined according to a non-intrusive measuring approach. Unfortunately, the operation of all conventional injection analyzers requires the injection in a volume filled with liquid and the application of a significant counter-pressure downstream of the injector. This feature prevents any operation with low pressure injection systems such as PFIs.
Technical Paper

Momentum Flux Spatial Distribution and PDA Analysis of a GDI Spray

2012-04-16
2012-01-0459
In the present paper, the results of a detailed experimental analysis of a GDI spray based on Imaging, Phase Doppler Anemometry data and Momentum Flux distribution measurement are presented and discussed. The GDI system used is a three-hole research injector, operated in an injection pressure range of 50 bar to 150 bar. Spray Imaging is performed according to an ensemble average approach, acquiring images at different timings during the injection process; the resulting penetration and cone angle time-histories allow a quantitative description of the spray structure shape. Momentum flux distribution data are obtained by means of a dedicated test bench which detects the impact force of small spray portions. The sensing device is moved in different positions inside the spray structure, with the acquired force transients averaged on several injection events.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
X