Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

AUS-32 Injector Spray Imaging on Hot Air Flow Bench

2015-04-14
2015-01-1031
The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the expanded use of exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One of the favored aftertreatment solutions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions.
Technical Paper

Experimental Analysis of the Urea-Water Solution Temperature Effect on the Spray Characteristics in SCR Systems

2015-09-06
2015-24-2500
One of the favored automotive exhaust aftertreatment solutions used for nitrogen oxides (NOx) emissions reductions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution (AUS-32) into the exhaust. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions. Understanding the spray performance of the AUS-32 injector is critical to proper optimization of the SCR injection system. Results were previously presented from imaging of an AUS-32 injector spray under hot exhaust conditions at the injector spray exit for an exhaust injection application.
Technical Paper

Experimental and Numerical Analysis of Latest Generation Diesel Aftertreatment Systems

2019-09-09
2019-24-0142
A comprehensive experimental and numerical analysis of two state-of-the-art diesel AfterTreatment Systems (ATS) for automotive applications is presented in this work. Both systems, designed to fulfill Euro 6 emissions regulations standards, consist of a closed-coupled Diesel Oxidation Catalyst (DOC) followed by a Selective Catalytic Reduction (SCR) catalyst coated on a Diesel Particulate Filter (DPF), also known as SCR on Filter (SCRoF or SCRF). While the two systems feature the same Urea Water Solution (UWS) injector, major differences could be observed in the UWS mixing device, which is placed upstream of the SCRoF, whose design represents a crucial challenge due to the severe flow uniformity and compact packaging requirements.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
X