Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Validation of a PC-Crash Multibody Sport Bike Motorcycle Model

2021-04-06
2021-01-0893
PC-Crash is an accident reconstruction program allowing the user to perform simulations with multibody objects that collide or interact with 3D vehicle mesh models. The multibody systems can be a pedestrian, a motorcycle, or a motorcycle with a rider. The multibody systems are comprised of individual rigid bodies connected by joints. The bodies can be of various size and stiffness along with varying coefficients of friction and restitution. Additionally, the joints can be tailored to define pivot types and range of motion. The current motorcycle models in PC-Crash are generic and do not resemble a sport bike type motorcycle. They are only globally scalable such that you cannot adjust length, width, or height independently. However, the user can adjust each body and/or joint individually as needed. A model was created that resembled a modern sport bike motorcycle. In addition, a multibody rider was mounted on the motorcycle in a typical sport bike riding position.
Journal Article

Bicycle Braking Performance Testing and Analysis

2020-04-14
2020-01-0876
The goal of this study was to determine bicycle braking performance, while considering different brake designs and applications. Eight bicycles were used to perform brake-to-stop tests: two full suspension mountain bikes, two hybrid bikes, one beach cruiser, one BMX bike, one road bike, and one single speed bicycle. The standardized brake testing procedure consisted of rear only brake application and both front and rear brake application. In order to maintain brake application consistency, a single rider performed all series of the brake tests at the same location, within a designated brake zone on dry asphalt. The tests were performed at initial velocities of 11 to 21 mph. For each test, the rider accelerated to the test speed and, upon entering the brake zone, applied maximum braking effort while maintaining a natural upright position in order to minimize lean. The associated skid marks deposited from wheel lock-up were verified, measured, and documented onsite.
X