Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Computational and Experimental Analysis for Optimization of Cell Shape in High Performance Catalytic Converters

2002-03-04
2002-01-0355
The effects of the internal geometry of catalytic converter channels on flow characteristics; exhaust backpressure and overall conversion efficiency have been investigated by means of both numerical simulations and experimental investigations. The numerical work has been carried out by means of a micro scale numerical tool specifically tailored for flow characteristics within converter channels. The results are discussed with aid of flow distribution patterns within the single cell and backpressure figures along the catalyst channel. The results of the numerical investigation provide information about the most efficient channel shapes. An experimental validation of the simulated results has been carried out with a production 3.6 liter, 6-cylinder engine on a dynamic test bench. Both modal and bag emission data have been measured during the FTP-Cycle.
Technical Paper

Multidimensional Modeling of SCR Systems via the Lattice Boltzmann Method

2019-09-09
2019-24-0048
In this paper, we deploy a novel, multidimensional approach to simulate SCR reactors across physical scales. For the first time, a full 3D Lattice Boltzmann (LB) solver is developed, able to accurately capture the fluid dynamic phenomena taking place inside SCR reactors, as well as the catalytic conversion of NOx. The influence of engine load on exhaust gas mass flow rate and catalytic converter activity is taken into account. The proposed approach is computationally light and the results prove the reliability and versatility of the LB Method for the simulation of the complex phenomena that take place inside the after-treatment devices.
X